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1. General overview 

1.1 Key points 

What is covered 
Assessment of potential application of statistical analysis for the prediction of total energy use in 
buildings and for the identification of the related most significant influencing factors. This has been 
covered first by an extended literature review, followed by the collection and critical analysis of 
activities carried out by ST-C working group with reference to: individual buildings and large building 
stocks up to regional/national level. 
A deep connection has been established between Subtask C and Task Force on Occupant Behavior, 
related to the explanation of OB through statistical and probabilistic methodologies, and Subtask A, 
for the definition of the structure of the database (“database typologies”) 
 
Why it is important 
To select a suitable methodology, the “scale” of the analysis is essential. To this aim, three main 
descriptors have to be considered: number of buildings to be analyzed (from an individual building to 
very large building stocks), number of items describing each building and time frequency of the 
collected time dependent parameters (annual to sub-hourly time frequency). This consideration fits 
with the proposal of the 3 Level Database in ST-A related to the complexity of the database (“database 
typologies”). 
 
The main fields of application for statistical analysis are:  

• energy diagnosis, in case of individual buildings, 
• energy consumption targeting and benchmarking, in case of large building stocks, 
• tendency for energy policies, in case of analysis  at regional/national level. 

 
Key points learned 

• The availability of suitable databases is a fundamental pre-condition to perform consistent 
analyses. 

• Even if using statistical tools, do not forget the physical meaning of the parameters.  
• Energy use can very often be described by a few main influencing factors.  
• Among the influencing factors, at present only a few databases contain items related to 

occupant behavior description. 
• Among the statistical models, regression models are mainly used for total energy use ranging 

from simple linear regression to complex neural network.  
• Often, increasing model complexity does not increase the prediction accuracy. 

 
Conclusions 
Suitable statistical models to apply for energy use analysis have been highlighted, and 
recommendations about the proper application of the different models as a function of the goal of the 
analysis are offered. They depend on the time scale (dynamic models are for time scale of hours, static 
or statistical models are for time scale of months or years) and on the space scale (the variance is 
larger for individual buildings than for a large stock of buildings). The most important factors 
influencing total energy have been highlighted as well. The potentialities in using these models is very 
high for both individual buildings and large building stocks, but the pre-conditions are the clear 
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definition of the goal of the analysis and the availability of suitable data where the influencing factors 
required for the analysis are collected. 
 

• It is important to the community that we assessed the potential applications of the tools to the 
field of total energy use.  

• Benefit of the fit between building and occupant behavior of energy saving, cost saving, and 
thermal comfort.  

• We highlighted the most important parameters and showed that models are different in terms 
of space and time. 
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1.2 Introduction 

Interest in the analysis of actual building energy consumption has rapidly increased during recent 
years when the attention of researchers and technicians has started to move from the calculated energy 
demand to the real energy consumption of buildings. This crucial shift is strictly linked (not only) to 
ICT technologies related to energy use that were developed in the last few years. 
 
ICT technologies are addressing a wide diffusion of energy and indoor environment long term 
monitoring systems, using both wired and wireless technologies. Thanks to the strong improvement in 
data acquisition and transmission technologies, it is now possible to have a real time picture of energy 
consumption and indoor environmental quality levels in buildings. But, it is fundamental to establish a 
clever monitoring plan in order to collect data coherently and enable the subsequent data analyses 
aimed at identifying the main influencing factors. To this goal, it is really important to clearly define 
which parameters have to be monitored, where the sensors have to be placed, how many sensors are 
needed and what is the suitable frequency of sampling. These decisions are strictly related to the 
available budget and to the results of a cost-benefits analysis. Due to these reasons, the identification 
of the most relevant influencing factor is also fundamental for reducing the number of parameters to 
be monitored. 
 
Buildings are becoming more and more complex since different energy carriers provide energy uses 
for satisfying all the services of the building. The possibility of placing sensors in the building to 
measure all of the influencing factors related to energy use will allow for the collection of the required 
data. The possibility to set a platform to collect and to elaborate data allows for a huge amount of 
information, but when moving to the reality a plan to obtain the right interpretation of the data and 
information is needed. The need to analyze actual energy consumption is mainly due to the difficulties 
in making a realistic assessment of building energy demand when the calculation model is not suitably 
calibrated based on detailed knowledge of the real building behavior. In this way, a crucial role is 
represented by occupant behavior, especially when skipping from calculated data of energy 
consumption in buildings to real energy consumption. Moreover, tendencies and statistics about 
building energy consumptions may help to understand the actual dynamics of building energy 
consumption. 
 
This change of perspective from standard calculated building energy performances to actual measured  
building energy uses is nowadays an important topic of research. As well known, in the first decade of 
this century much emphasis has been placed on the definition of indicators for characterizing the 
energy performance of a building. An example of the effort given by the technical and research 
community, together with the political bodies, is the large movement connected to the development 
and dissemination of the building energy certification in Europe, starting from the Energy 
Performance of Building Directive of 2002.  
 
According to the definition proposed in the Directive, building energy performance has been mainly 
interpreted as an indicator of the building energy behavior related to “standard“ operative boundary 
conditions. The word “standard” highlights a crucial assumption in the calculation procedures and it is 
clearly explained in the picture proposed at the very start-up of IEA-ECBCS Annex 53 (see Figure 1-
1).  Thus, the starting point was to analyze the theoretical energy consumption, a shift toward the 
actual energy use is needed and all the influencing factors related to energy use should be assessed. 
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Figure 1-1: Influencing factors on total energy use in buildings (IEA-EBC Annex 53) 
 
In Figure 1-1, the building energy consumption influencing factors are grouped into 6 main categories. 
The three categories listed in the left side of the picture (climate, envelope, equipment) are related to 
variables influencing “intrinsic” building energy performance which is calculated by fixing standard 
conditions for the other three categories listed in the right side of the picture (operation & maintenance, 
indoor environmental conditions, occupant behavior) that are specifically related to the actual building 
functioning. As a consequence, the building energy performance is calculated assuming that all of the 
analyzed building systems and functions behave ideally under the same standardized 
functioning/working conditions. 
 
This approach allows a coherent comparison of the building energy performance calculated for 
different buildings but this energy performance is not strictly related to the actual energy consumption. 
When the attention moves to real energy consumption, all the six categories of influencing factors 
have to be taken into account to give a complete picture; moreover, a seventh category (social aspects) 
is also mentioned by Annex 53. As demonstrated in practice, buildings located in the same place 
(same climate) with the same building envelope and system characteristics, and consequently with the 
same value of the building energy performance index, may show high differences in the real energy 
consumption (see Figure 1-2) due to: 
 

• different actual operation and maintenance, 
• different actual indoor environmental quality level, 
• different behavior of the occupants (ranging from energy conscious to energy unconscious). 
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Figure 1-2: Frequency distribution of heat consumption in 290 investigated “identical” houses in 

Denmark, Henningsen, 1999) 
 
The increased number of considered influencing factors, from three (related to energy performance) to 
six (related to energy use), as shown in Figure 1-1, highly amplified the complexity of the problem, 
especially because the last three categories are connected to parameters which are not deterministic 
and constant, but can change stochastically with time.   
 
This consideration demonstrates the difficulties associated with realistically predicting building energy 
consumption using energy calculation tools such as dynamic energy simulations that are based on so 
called “direct (calculation) methods”. In fact, it is very difficult to suitably describe the stochastic 
variation of the input parameters for the building energy calculations connected to the three last 
categories of influencing factors mentioned above. 
 
At the same time, some important questions emerge including the following:  
 

• Do all the factors have the same magnitude of impact on building energy consumption? 
• Which are the factors showing the largest influence on building energy consumption? 
• Which are the dominant factors in terms of effect on building total energy consumption? 

 
To find an answer to these questions, it is necessary to primarily or exclusively focus of the 
investigations on those factors showing the greatest impact. Moreover, the identification of those 
factors may allow the development of prediction models based on so called “inverse modeling” 
techniques (this specific issue will be discussed in the following chapters). 
 
In order to perform this kind of analysis, it is fundamental to establish a database where the 
information about both the energy consumption and the parameters related to the six influencing 
factors are collected. One of the key elements when statistical based tools are used for analysis is to 
clearly define to subject of the study.  The diagram in Figure 1-3 shows the main investigation fields. 
It represents on its axes the building sample dimension and the amount of information for each 
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building analyzed that is required to obtain suitable data for the analysis. For example, if the building 
sample is represented by only one building (an “individual building”) lots of detailed information 
should be gathered in order to have suitable information. The collective experience of the Annex 53 
partners presented in Chapter 3, shows different types of information is sometimes collected, from 
very detailed up to the breakdown of each single final energy use. On the contrary, in the case of 
regional or national analysis, little information about each building in the sample is needed to provide 
some basic but interesting statistical analysis. Starting from these considerations, some questions arise:  
 

• How detailed does the database need to be for each building? 
• What is the format of the database? 
• Which method should be used to analyze the database? 

 
These questions are strongly connected with the goal of our analysis. This picture shows how to 
synthesize the purpose of the analysis. 
 
If the goal is to analyze the individual building to show its energy consumption behavior, the 
benchmark is the building itself although an absolute benchmark may still prove useful (i.e. the 
behavior of the building from one year to the next, from one month to the next). Here, by collecting 
the suitable amount of information it is possible to make a detailed energy diagnosis of the examined 
building. In fact, this approach is typically used to make an energy diagnosis of the building and after 
to plan energy saving measure.  
 
When moving to a large building stock, an initial goal is to find homogenous buildings that are 
grouped together in a large stock, and determine some target values, baselines and benchmarks for the 
building energy uses. In this specific case, where for example aggregated data for energy consumption 
is gathered, the idea is to make statistical analysis to provide information that can also be useful for 
planning energy saving actions on a national scale. 
 
The analysis of an individual building and the national analysis of building stocks have different goals. 
For individual buildings the goal is to address the ability of a single building to have continuous 
improvements in its energy behavior.  At the regional or national level the goal is to define some 
specific guidelines for suitable energy policies for energy retrofit actions. 
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Figure 1-3: Main field of investigations related to the building sample size 

 
Another key aspect regards not only how much data is in the database but also the frequency of the 
time related parameters. They typically range from hourly or sub-hourly data (detailed monitoring in 
one specific individual building) to yearly data (to have a general overview of the tendencies of a 
country).  
 
One of the first goals of this annex is to provide a clear picture of the different databases and their 
possible applications. 
 
A database is a fundamental element required before utilizing a data driven approach for statistical 
analysis. A fundamental aim of this data driven approach is to find relationships between influencing 
factors and energy use in buildings. In this annex, the influencing factors are grouped into six main 
categories (Figure 1-1) which are families of influencing factors. For each of them, it should be 
defined which items are to be collected (e.g. climate means outdoor temperature, HDD, CDD, etc.) 
and then verify if a relationship exists between the influencing factors and the final energy use.  
 
As underlined in the following chapters, the database may show different characteristics according to 
the subject of the study (from individual buildings up to national building stocks), the categories of 
influencing factors considered (from climate only to all six categories), the variables collected within 
each specific category, as well as the frequency of the time dependent variables and consumption data 
collected (from annual to 15 minute intervals).  
 
Moreover, the creation of a suitable database is the first and essential step to perform a number of 
statistical analyses addressed to describe the subject of the study.  
 
As mentioned, the possible applications of statistical analysis may be divided into two big fields: to 
analyze individual buildings, or to focus the analysis on a large building stock.  Firstly, statistics could 
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be used to describe the object of the study (descriptive statistics) providing a clear description of the 
actual energy consumption and then to find out which are the dominant influencing factors in relation 
to the dependent variable (energy use) and independent variables (the influencing factors). When the 
most important influencing factors are known, statistical analysis could be used to build a prediction 
model.  
 
Statistics can also be applied for creating reference buildings for a given building stock that can be 
implemented directly in building energy simulation tools.  
 
Another possible application of statistics is to define “modules” meant to provide statistical inputs 
directly to a building energy simulation tool. For example, when dealing with occupant behavior (e.g. 
the adjustment of a thermostat) the problem is somewhat non deterministic, but is related to the 
probability of doing a certain action when some environmental parameters are present. So the input 
data (probability) for the direct simulation tool could be defined through a statistical approach. 
 
According to this general scheme, the application of statistical analysis can be structured in three 
levels of investigations (Figure 1-4). The first level of investigation is a basic level. Since an amount 
of data is available, first of all tendencies related to the dataset should be identified. The use of 
statistical parameters (mean value, standard deviation, etc.), frequency distributions of the collected 
data, and etc. can provide significant information to define a clear picture of the subject of the study: 
it’s the use of statistics to describe. The second level of investigation utilizes statistics to find out the 
influencing factors that have a dominant effect on energy uses. If the most dominant influencing 
factors can be reduced to a limited number of parameters, it’s possible to find out the relationship 
between these parameters and the final energy use. Consequently, in the third level of investigation a 
very quick and robust prediction model can be built to provide information about the energy behavior 
of the building.  
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Figure 1-4: ST-C final report structure 
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2. Statistical analyses and prediction methods: general approaches 

2.1 Database structure 

The need to define a reference structure for the database is a crucial step. It is also evident from the 
results of a literature review focused on international research journals dealing with statistical analyses 
and inverse modeling approaches for prediction of building energy consumption. In order to provide 
homogeneous information, the analyzed papers have been organized using a specific format described 
below. 
 
First of all, it is important to remark that the subject on which the analysis will focus has to be clearly 
defined at the very beginning of the investigation process. Forcing a subdivision into families, the 
subject of the statistical investigation may be divided as follows: 
 

• Individual building; an analysis focused on one specific single building (or a group of 
individual buildings); 

• Large building stocks: an analysis of a group of statistically representative buildings, typically 
showing similarities in terms of use (residential, office, school, etc.); 

• Regional/national level analyses: typically statistical analyses developed from a  database with 
a large number of buildings on a national basis. 

 
The discussion presented here refers to residential (single and multifamily houses) and office (small 
and large) buildings, according to the goals of Annex 53; however, the approach can be extended to 
other building classes. 
 
In general, to perform suitable analyses, the number of buildings and the (minimum) amount of 
information required to describe each building are related, as shown in Figure 2-. 

 
 

Figure 2-1: Diagram of databases information according to building sample dimension 
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When a single individual building is the subject of the investigation, a high number of parameters 
describing its energy behavior is required (one building, but with lots of information) and the analysis 
can be performed on each specific energy end use. On the contrary, when analyses are performed at a 
national level, a lot of buildings are available but described by few parameters (lots of buildings, but 
with less information).  
 
When the subject of the study is chosen, the database may be identified using two main characteristics: 

1. Categories of influencing factors which are collected, according to six categories previously 
defined, 

2. Sampling frequency of the time dependent variables (consumptions and parameters belonging 
to the six categories of influencing factors). 

 
Considering point 1 above, typically the database structure can refer to 3 “levels”: 
 

• Level 1 – categories of influencing factors: climate, envelope, systems, 
• Level 2 – categories of influencing factors: Level 1 + control & maintenance, indoor 

environmental conditions, 
• Level 3 - categories of influencing factors: Level 2 + occupant behavior. 

 
The three levels may also contain information about the seventh factor (social aspects). 
Considering point 2 above, typically the database structure can collect time dependent variables as 
follows: 
 

• Level 1* – frequency: annual 
• Level 2* – frequency: monthly 
• Level 3* – frequency: hourly (or sub-hourly)  

 
It should be noted that the time frequency of the collected data is also related to the subject of the 
study. For investigations at the national/regional level, annual data is typically acceptable, but for 
advanced analyses of individual buildings, sub-hourly data is required. As a consequence, the 
databases used in practice can be classified according to their reference structure and placed within a 
matrix as shown in Table 2-1. 
 

Table 2-1: Database structure according to categories of influencing factors and time frequency of 
dependent variables. 

 Categories of influencing factors 

 

 Level 1 Level 2 Level 3 
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The database structure is highly related to the statistical and prediction methods that can be adopted 
for the data analyses and elaborations, and consequently with the results obtained through the 
investigations performed.  
 
2.1.1 Database structure and literature review 

The database structure previously introduced is used to define a criterion for the classification of the 
selected and analyzed papers. In particular, each examined paper is characterized by the following 
items: 
 

• authors, 
• title, 
• database typologies (i.e. to which kind of database reference structure it refers), 
• adopted method for the data elaboration for energy consumption analysis/prediction, 
• subject of the analysis, 
• goal of the analysis. 

 
This information is synthesized as presented in Table 2-2 where, for the sake of brevity, only a few of 
the more than 50 analyzed papers are shown. The work of cataloguing papers is still ongoing and the 
table is continuously updated. The literature review results, organized using the format of エラーエラーエラーエラー! 参参参参
照元照元照元照元がががが見見見見つかりませんつかりませんつかりませんつかりません。。。。, are available in electronic format. 
 

Table 2-2: Organized structure of the literature review activity 
Author Title Influencing 

factors 
categories 

Adopted method Subject of the 
analysis 

Goal of the analysis 

Merih 
Aydinalp, V. 
Ismet Ugursal, 
Alan S. Fung 

Modeling of 
residential energy 
consumption at the 
national level 

3+ Engineering 
method/conditional 
demand analysis 
method/artificial 
neutral network 

Large building 
stocks/residential 

Comparative assessment 
of the three methods 

H. 
Farahbakhsh, 
V. I. Ugursal, 
A. S. Fung 

A residential end-
use energy 
consumption 
model for Canada 

2 Engineering method 
(CREEM) 

Large building 
stocks/residential 

Forecast building energy 
consumption 
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Merih 
Aydinalp-
Koksal, V. 
Ismet Ugursal 

Comparison of 
neural network, 
conditional 
demand analysis, 
and engineering 
approaches 
for modeling end-
use energy 
consumption 
in the residential 
sector 

3+ Conditional demand 
analysis method 

Large building 
stocks/residential 

Forecast building energy 
consumption 

Merih 
Aydinalp, V. 
Ismet Ugursal 
b, Alan S. 
Fung 

Modeling of the 
space and domestic 
hot-water heating 
energy-
consumption 
in the residential 
sector using neural 
networks 

3+ Artificial neutral 
network 

Large building 
stocks/residential 

Forecast building energy 
consumption 

Merih 
Aydinalp, V. 
Ismet Ugursal, 
Alan S. Fung 

Modeling of the 
appliance, lighting, 
and space-cooling 
energy 
consumptions in 
the residential 
sector using neural 
networks  

3+ Artificial neutral 
network 

Large building 
stocks/residential 

Forecast building energy 
consumption 

Note: in “Influencing factors categories”, the symbol + means that data referring to “social aspects” 
was also collected. 
 
 
2.2 Statistical analyses for description of the examined subject 

The objective of the present chapter is to outline the main preliminary analyses used in the preparation 
phase of examination of the three main subjects of analysis of Annex 53, which are the following:  
 

• Individual buildings, 
• Large building stocks, 
• Regional/national analyses. 

 
Each of these subjects of study has different goals, ranging from diagnosis of the energy consumption 
in a specific building to development of building design guides or supporting strategic energy planning 
policies. Here we do not intend to describe in detail the statistical methods and theory, covered in 
hundreds of specialized books, but intend to outline a scope of statistical descriptors and analyses 
appropriate for each of the above mentioned subjects of study. 
 
One of the main aims of this analysis is to summarize the available data sets, to facilitate the 
comparison between them and to account for variable dependences in the data. The resulting analysis 
aimed at learning and gaining insight into the populations the data represent is done by inferential 
statistics and is the subject of the following chapters. 
 
The methods used in the energy consumption analysis for description of the data set include 
approaches from descriptive statistics and Exploratory Data Analysis (EDA).  Descriptive statistics 
[44, 52] provides summaries about the data samples and about the observations that have been made. 
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Such summaries may be either quantitative (i.e. summary statistics), or visual (i.e. simple-to-
understand graphs). These summaries may either form the basis of the initial description of the data as 
part of a more extensive statistical analysis, or they may be sufficient in and of themselves for a 
particular investigation.  The Exploratory Data Analysis [53] found in the Engineering Statistics 
Handbook [21] is an approach for data analysis that employs a variety of techniques, mostly graphical, 
to provide insight into the data set, uncover underlying structure and distributions, extract important 
variables and detect anomalies. 
 
The objectives and the statistical analyses for description of each of the subjects of examination are 
discussed separately in sequence. The list of analyses presented here is by no means exhaustive and is 
meant for orientation of the analysts. The selection of the most appropriate method depends on the 
specific problem. 
 
2.2.1 Individual buildings 

For analysis of individual buildings, normally a large amount of information is collected, comprising 
detailed building characteristics, climatic data, energy uses and high frequency energy consumption 
data ranging from several minutes to daily or monthly data intervals. Usually the objective of the study 
is to analyze the energy consumption, to find the main influence factors in order to alter them and 
achieve energy savings.  Another purpose of the analysis may be to model the building and to compare 
the expected with the observed behavior for detecting operational faults or predict savings.  
 
Whatever the purpose of the study is, the data set should be reduced to some representative parameters 
in order to obtain conclusions. Often, building analysis starts with a comparison of relevant energy 
consumption parameters with reference values (benchmarks) in order rapidly to situate the building in 
question within the range of consumption of similar buildings and to estimate its energy saving 
potential. In comparison, when modelling, it is necessary to find relations between variables within the 
data set and this is first done using exploratory analysis techniques. 
 
When the energy consumption of an individual building is studied, the statistical analysis to describe 
the data set is expected to provide some of the following: a breakdown of the energy consumption by 
uses (heating, lightning, equipment, etc.), by energy sources (electricity, gas, etc.), by periods of use 
(occupied/not occupied, etc.), energy use intensities (EUI) and also other appropriate quantitative 
parameters that might be considered such as consumption normalized by number of users, volume, etc. 
The calculation of all these descriptive statistics forms part of the preliminary analysis. 
 
To gain insight into the data set, different graphical statistical exploratory techniques can be used.  
 

• Simple charts to visualize energy breakdowns are pie charts and bar plots.  
• Frequency distributions or histograms are often used for estimation of the probability 

distribution of continuous variables.  Frequency distributions can be plotted on an absolute or 
relative basis for different parameters, (e.g. outside temperature and internal temperature).  

• Cumulative frequency distributions can be used to express the probability of some occupant 
behavior as a function of external influences, for example window opening as a function of 
outside temperature, or window blinds operation as a function of solar radiation level.  
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• Pareto charts offer the possibility to represent the factors that contribute most to a given 
consumption. Identifying these factors will maximize the results.  

• Scatter plots can reveal the relation between two parameters in the dataset when there is an 
interest in analyzing dependencies. They are able to show either linear or nonlinear 
relationships between variables. 

 
2.2.2 Large building stock 

The objective of the analysis of large stocks of buildings is to discover common characteristics of 
building typologies and the main factors influencing their energy consumption. The available data is 
normally more reduced and with lower time frequency compared to individual buildings, but is 
available for a large number of buildings of similar characteristics. The results of the studies are 
usually used for developing design guides or recommendations and best practices aiming at the 
reduction of the energy consumption in new or existing buildings. Therefore, descriptive statistics are 
used to summarize the data set parameters and properties like the range and the distribution within the 
data set. This permits the identification of the most important variables and members of the set and 
facilitates the prioritization of the measures. 
 
In the studies of large building stocks the energy consumption’s representative parameters may be 
similar to those in individual buildings, but in this case the quantitative statistics for description are 
those characterizing the interval and the distribution: the mean, standard deviation, first quartile (Q1), 
median or second quartile (Q2), third quartile (Q3), as well as minimum and maximum values.  
 
Some of the graphical exploratory and representation techniques usually used are described below. 
Box plots, or box-and-whisker plots, depict groups of numerical data using five numerical parameters: 
smallest observation (sample minimum), lower quartile (Q1), median (Q2), upper quartile (Q3) and 
largest observation (sample maximum). Alternative forms of boxplots can be used for identification of 
outliers. Variations of boxplots can be found in literature [45, 16]. Histograms and cumulative 
frequency distributions are used to plot or estimate the probability density of the variables of interest.  
A non-exhaustive summary of possible quantitative and graphical analysis techniques for description 
of data sets is provided in Table 2-3. 
 
2.2.3 Regional/national analyses 

The regional/national analysis of building energy consumption has the principle objective of 
supporting energy planning and strategic energy policies in the mid and long term. In order to perform 
the analyses, the energy consumption should be structured and studied by building typologies, 
building use and energy type.  Large-scale initiatives (e.g. TABULA - Typology Approach for 
Building Stock Energy Assessment) aim to develop “building types” at the national level that are 
representative of a defined period of construction, size, etc., which permit evaluation of the potential 
impact of energy saving policies and regulations. Data is collected by extensive samples and usually 
comprises annual or monthly consumption data, climatic data, and complementary information about 
city/region size, rent per capita, etc. 
The statistics and analysis for description of the data sets are summarized in Table 2-3. 
 

Table 2-3: Organized structure of the literature review activity 
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Subjects of study in Annex 53 Statistics and analyses for description of the 
examined subject Individual 

buildings 

Large building 

stocks 

National / regional 

analyses 

Quantitative statistics for description 
Breakdown of energy consumption by uses X   

Breakdown of energy consumption by uses 

(mean, median, standard deviation) 

 X X 

Breakdown of energy consumption by energy 

types 

X   

Breakdown of energy consumption by energy 

types (mean, median, standard deviation) 

 X X 

Breakdown of energy consumption by periods 

of use (day/night, occupied/not occupied, …) 

X   

Breakdown of energy consumption by periods 

of use (day/night, occupied/not occupied, 

…)(mean, median, standard deviation) 

 X X 

Energy Use Intensities (EUI) (energy 

consumption normalized by floor area, 

number of users, …) 

X   

Energy Use Intensities (EUI) (energy 

consumption normalized by floor area, 

number of users, …) (mean, median, standard 

deviation) 

 X X 

… … … … 

Graphical techniques for analysis 
Bar plots, pie-charts X X X 

Time series plots X   

Frequency distribution, histograms  X X X 

Cumulative frequency distributions X X X 

Scatter plots  X X X 

Pareto charts  X X X 

… … … … 

 
2.2.4 General overview 

The studies previously presented offer a general overview of the applications of statistical analysis at 
different scales of investigation, with different goals, ranging from diagnosis of the energy 
consumption in a specific building to developing of building design guides or supporting strategic 
energy planning policies. The time step of the collected data, useful for energy consumption 
predictions, is also related to the subject of the study: for investigations addressed to national/regional 
level annual or monthly data are typically acceptable, but for the analysis of an individual building 
hourly to monthly intervals are typically required.  
 
It is therefore clear that the time step of the data available for the analysis is a function of scale of the 
investigation and therefore of the goal of the analysis. As a consequence, different influencing factors 
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can be highlighted as relevant for each scale of investigation, as well as the most suitable model type 
to be used for the energy use prediction. 
 
The table below (Table 2-4) summarizes the main influencing factors and the most suitable models 
used by different contributions presented here which were identified, based on the time step of the 
available data and according to the goal of the analysis identified by the scale of the investigation. 
 

Table 2-4: Overview of main influencing factors and most suitable model used in the contributions 
presented 

Scale of investigation Timestep Main influencing factor Most suitable model 

Building geometry Regression analysis: 

Building physical characteristics Linear 

Climate (indoor/outdoor) multivariate 

Occupancy (n° of users) logistic 

Users lyfestyle partial least square 

 q-q plot 

 principal components 

 Artificial neural network 

Individual buildings 

Hourly energy consumption       

Daily energy consumption     

Monthly energy 

consumption 

  Ensembling methods 

Building geometry Regression analysis: 

Building physical characteristics Linear 

Climate (outdoor)/location multivariate 

Occupancy (n° of users) logistic 

Users lyfestyle partial least square 

Purpose of the use multiple 

Heating/Cooling operation Neural network 

Large buildings 

Monthly energy 

consumption  

Annual energy consumption  

  Quantification methods 

Building typology Frequency distribution 

Building physical characteristics Cluster analysis 

Location (Degree Days) Hierarchical cluster techniques 

Period of construction Monthly regression models 

Heating/Cooling operation Engineering models 

National Buildings 

Monthly energy 

consumption Annual energy 

consumption  

Purpose of the use   

 
 
 



22 
 
 

3. Statistical analyses for the determination of relevant influencing factors 

In the previous section, the database structure for building energy analysis is introduced. Regardless of 
the database level (Level 1, 2 or 3) and data frequency in the database, the goal is to develop models 
and define relationships among variables. During model development, variables are separated into two 
groups: predictor (input) and response (target or output) variables.  
The influencing factors of building energy use are grouped in six main categories. Relating to the 
above mentioned variable classification it means that the influencing factors are predictor (input) 
variables, while the building energy use is a response (target or output) variable. 
 
Sensitivity analysis can be used to find the relevant influencing factors. In fact, sensitivity analysis is 
the study of how the uncertainty in the output of a model (numerical or otherwise) can be apportioned 
to different sources of uncertainty in the model input. Sensitivity analysis provides information such as 
factors that mostly contribute to the output variables; the region in the space of input factors for which 
the model output is either maximum or minimum or within pre-defined bounds, etc. In this way, 
sensitivity analysis can be very useful for the purpose of determining the influencing factors of 
building energy use. Further, in order to avoid overwhelming the model, sensitivity analysis can help 
to simplify models and find the most important input factors. 
There are several possible procedures to perform uncertainty and sensitivity analysis. These 
procedures can be any of the following: 
 

• Local methods, such as the simple derivative of the output with respect to an input factor, 
• A sampling based sensitivity where the model is executed repeatedly for combinations of 

values sampled from the distribution (assumed known) of the input factors, 
• Methods based on emulators (e.g. Bayesian) where the value of the output, or directly the 

value of the sensitivity measure of an input factor, is treated as a stochastic process, 
• Screening methods where the objective is to estimate a few active factors in models with many 

factors (one of the most commonly used screening methods is the elementary effect method), 
• Methods based on Monte Carlo filtering. 

 
Since Subtask C in Annex 53 is dealing with data organized into databases, a sampling based 
sensitivity analysis is the most relevant method for defining influencing factors of building energy use. 
In this case, data from the databases are samples for analysis. The starting point of statistical 
sensitivity analysis is the generation of input-output scatter plots, which are obtained by plotting the 
points. An example of using the scatter plot in sensitivity analysis is shown in Figure 3-6 (from 
Corgnati et al. 2008 [11]) and is used here for illustration purposes only. 
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Figure 3-1: Sensitivity analysis by using the scatter plot 

 
Finally, as shown in Figure 3- the sensitivity analysis is performed by repeating the regression analysis 
on data in the different scatter plots. Regression analysis assesses the importance of the input variable 
with respect to the uncertainty in the output component. 
 
To perform sensitivity and regression analysis, several relations are necessary. The following relevant 
equations for sensitivity and regression analysis are written based on [9]. Available data in a database 
can be analyzed in the following way. For example, an observed database can consist of i samples. 
These samples are organized in the matrix as  where ,  is the matrix of the input 
variables, and Yi is the matrix of the output variables. The matrix of the input variables consists of i 
variables. The starting point of statistical sensitivity analysis is the generation of input-output scatter 
plots, which are obtained by plotting the points as shown in Figure 3-. The resulting scatter plots are 
then examined to find possible relations between the outputs Yi and the inputs  . A more formal 
analysis of the input-output relationship is to perform regression analysis on a linear model between 
the predicted output,   , and the input parameters  , of the form 

 
  (1) 

 
In this case, sensitivity analysis implies searching for input-output relationships by using regression 
analysis. The regression coefficients  can be used, along with other indicators computed during the 
regression analysis, to assess the importance of the individual input variables  with respect to the 
uncertainty in the output components . The higher the absolute value of the regression coefficient, 
the higher the influence on the output. Further, the calculated output   in terms of the actual 
parameter values  will have the following linear form: 
 
  (2) 

 
where   denotes the error between the calculated and predicted value of the corresponding element of 
the output. In order to get the best fit of the regression model, it is necessary that the sum of the 
squares of the deviation (shown in Equation 3) is minimized. 
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  (3) 

Finally, to gage the goodness-of-fit of the model, the coefficient of determination is used. The 
goodness-of-fit of the model can be calculated as: 
 

   (4) 

 
where  is the average value of the output variables. A value of 1 indicates a perfect correlation 
between actual data and the regression equation; a value of 0 indicates no correlation. For the purpose 
of the building energy analysis, such as modeling using the utility bill data, as a rule of thumb the 
value of  should never be less than 70 [14]. 
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4. Selection of the “model type” for energy use prediction and identification of the 
prediction model parameters 

4.1 Introduction 

The classic approach to evaluate the building-HVAC system energy use is based on the application of 
a thermal model with known system structure and proprieties as well as forcing variables (forward 
approach). This model can be more or less complex depending on the requested result accuracy and 
output time step. For a tailored analysis the forward approach requires a detailed knowledge of the 
physical phenomena (and their relative magnitude and interactions) affecting the system behavior, and 
the building system operating mode. ESP-r, BLAST, DOE-2, TRNSYS and Energy Plus are the most 
widespread simulation codes based on forward simulation models. The application of the “forward 
approach” is widely discussed in ST-D of Annex 53.  
 
A different approach for building energy analysis is based on the so called inverse or data-driven 
models. In this case, the input (regressor variables) and output variables (response) are known and 
measured and the objective is to estimate the system parameters and to describe the mathematical 
model. Using a data driven approach it is possible to evaluate the as-built system performance (the 
model parameters are calculated on the actual building energy use) allowing often a more accurate 
prediction of the energy consumption tendencies with respect to the forward approach. 
 
The definition of the intended purpose of the building energy analysis is the fundamental step for the 
selection of the appropriate model approach. The approach must be able to match the analysis 
requirements with sufficient accuracy. The requirements of building energy analysis may include 
design optimization, energy audit, energy certification and so on. As mentioned, the different methods 
can be grouped into two main families, according to the goal of the analysis.  
 
Forward approach: it is the classical presentation of any physical phenomena: it starts with the 
definition of the energy model. Then the collection of input variables and finally the simulation run to 
evaluate the output. 
 
Data driven approach: it may be described as a bottom-up approach as it starts with the measurement 
of the force driven variables and of the output variables, followed by the evaluation of some building 
features called “system parameters” and the construction of the data driven model that will be used to 
assess the output for another set of force driven variables. 
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Figure 4-1: Comparison between forward approach and data driven approach 
 
By a data driven approach (inverse modeling), an empirical analysis is carried out on the building 
energy behavior, and its relationship to one or more driving forces or parameters (regressor variables). 
This approach is referred to as a system identification and parameter identification. To develop an 
inverse model, it is necessary to carry out a mathematical description of the building or system, and 
then identify the parameters of interest using statistical analyses (estimations). The input and output 
variables are known and measured, and the goal is to determine a mathematical description of the 
relationship between the independent variables and the dependent one. In contrast to the forward 
approach, the data-driven approach is useful when the “system” has been built (that is, the “system” 
exists and works) and actual performance data are available for model development and/or 
identification. The model parameters are evaluated from actual building performance and working 
conditions, so the data driven model is fine for the evaluation of as-built system performance, allowing 
more accurate prediction of future system performance under specific, real boundary conditions. 
 
The data driven modeling, based on the application of statistical tools, is adequate, among the others, 
for evaluating demand-side management (DSM) programs, to identify/test simple and conventional 
energy conservation measures in existing buildings and for baseline model development in energy 
conservation measurement and verification (M&V) projects. 
 
For example, with a data driven approach, it is possible to evaluate the causes of discrepancies of 
actual consumption compared with design predictions and find the causes (such as  anomalous weather 
conditions, unintended building operation, improper operation), or to verify energy savings due to a 
retrofit action and not to other causes (e.g., the weather). 
 
Data-driven methods for energy-use evaluation in buildings can be classified into three categories 
(ASHRAE [14]):  
 

• empirical or “black-box” approach, 
• calibrated simulation approach, 
• “gray-box” approach. 

Understand the 
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Model 

construction 
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identification 

Simulation 
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Output 
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Force driven variable 

identification 

Understand output 

variations causes’  

Force driven variable 
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In the empirical approach, the most accepted techniques use linear or change-point linear regression 
to correlate energy use or peak demand as the dependent variable (output) with weather data and/or 
other independent variables (input). A simple, or multivariate regression model, is operated between 
measured energy use and the various influential parameters (e.g., climatic variables, building 
operation). This approach can be used with any time scale (monthly, daily, hourly sub-hourly). Single-
variate, multivariate, change point, Fourier series and the artificial neural network (ANN) belong to 
this category. Least-squares regression is the most common regression technique to determine the 
coefficients of the model. Such a purely statistical approach is appropriate to evaluate demand side 
management programs, identify energy conservation measures in an existing building and to develop a 
baseline model in energy conservation measurement and verification projects while their value is 
limited for diagnosis and online control. 
 
The calibrated simulation approach uses an existing building simulation computer program and 
calibrates the physical inputs to the program so that measured energy use matches closely with that 
predicted by the simulation program. In this way, when the subject of the study is an individual 
building, consistent predictions can be obtained. The calibration process (tuning) can be conducted 
with monthly data or data that span a few weeks over the year, but the level of accuracy decreases with 
the decrease of data time frequency and increase in time interval. Several difficulties prevent the use 
of simulation calibrated models to describe the real performance of the building: 1) arrangement of 
weather data used by simulation programs, 2) the methods selected to calibrate the model and 3) the 
selected methods to measure the input parameters required for simulation (building mass, infiltration 
coefficients, etc.).  However the calibrated simulation approach requires a high level of user skill and 
knowledge in both, simulation and practical building operation, a high degree of expertise, a very large 
number of input parameters, and enormous amounts of computing time, as well as financial resources. 
 
The gray-box approach first formulates a physical model to represent the structure or physical 
configuration of the building or energy system, and then identifies the representative parameters and 
aggregated physical parameters and characteristics by statistical analysis (Rabl and Riahle 1992). 
Moreover, two primary types of inverse models are classified in the literature: steady state inverse 
models and dynamic inverse models. The criterion on which the classification is based is that dynamic 
inverse models contain time-lagged variables.  
 
All three approaches previously described can be implemented through steady state and dynamic 
models. Typical single and multiple linear regressions fall under the “Black Box” steady-state models.  
A model is dynamic when dependent or independent variables are explicitly expressed as functions of 
time. Dynamic inverse models include equivalent thermal network analysis, ARMA models, Fourier 
series models, machine learning, and artificial neural networks. The dynamic models are capable of 
taking into account dynamic effects such as thermal mass which traditionally have required the 
solution of a set of differential equations. The disadvantages of dynamic inverse models are that they 
are increasingly complex with respect to steady state models and need more detailed measurements to 
"tune" the model. 
 
Table 4-1, proposed by ASHRAE, presents information that is useful for selecting an inverse model 
where as a function of the model (diagnostics - D, energy savings calculations - ES, design - De, and 
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control - C), degree of difficulty in understanding and applying the model, time scale for the data used 
by the model (hourly - H, daily - D, monthly - M, and sub-hourly - S), calculation time, input variables 
used by the models (temperature - T, humidity - H, solar - S, wind - W, time - t, thermal mass - tm), 
and accuracy. 
 

Table 4-1: Capabilities of different forward and data-driven modeling methods (by ASHRAE,10) 
 

Methods Usea Difficulty  Time 
Scaleb 

Calc. 
Time 

Variablesc Accuracy 

Simple linear regression ES Simple D, M Very fast T Low 
Multiple linear regression D, ES Simple D, M Fast T, H, S, W, t Medium 
ASHRAE bin method and 

data-driven bin method 
ES Moderate H Fast T Medium 

Change-point models D, ES Simple H, D, M Fast T Medium 
ASHRAE TC 4.7 

modified bin method 
ES, DE Moderate H Medium T, S, tm Medium 

Artificial neural networks D, ES, 
C 

Complex S, H Fast T, H, S, W, t, 
tm 

High 

Thermal network D, ES, 
C 

Complex S, H Fast T, S, tm High 

Fourier series analysis D, ES, 
C 

Moderate S, H Medium T, H, S, W, t, 
tm 

High 

ARMA model D, ES, 
C 

Moderate S, H Medium T, H, S, W, t, 
tm 

High 

Modal analysis D, ES, 
C 

Complex S, H Medium T, H, S, W, t, 
tm 

High 

Differential equation D, ES, 
C 

Complex S, H Fast T, H, S, W, t, 
tm 

High 

Computer simulation 
(component-based) 

D, ES, 
C, DE 

Very 
complex 

S, H Slow T, H, S, W, t, 
tm 

Medium 

(fixed schematic) D, ES, 
DE 

Very 
complex 

H Slow T, H, S, W, t, 
tm 

Medium 

Computer emulation D, C Very 
complex 

S, H Very 
slow 

T, H, S, W, t, 
tm 

High 

Notes: 
aUse shown includes diagnostics (D), energy savings calculations (ES), design (DE), and control (C). 
bTime scales shown are hourly (H), daily (D), monthly (M), and subhourly (S). 
cVariables include temperature (T), humidity (H), solar (S), wind (W), time (t), and thermal mass (tm). 
 
In Table 4-2,  the methods for analyzing building energy use are classified as either forward or data-
driven, and either steady-state or dynamic. 
 

Table 4-2: Classification of analysis methods for building energy use (by ASHRAE, [14]) 
 

Data-Driven 
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Empirical or Calibrated Physical or 

Method Forward Black-

Box 

Simulation Gray-

Box 

Comments 

Steady-State Methods 

Simple linear regression 

(Kissock et al. 2002; Ruch and Claridge 

1991) 

 X   One dependent parameter, one 

independent parameter. May have slope 

and y-intercept. 

Multiple linear regression 

(Dhar 1995; Dhar et al. 1998, 1999a, 

1999b; 

Katipamula et al. 1998; Sonderegger 1998) 

 X   One dependent parameter, multiple 

independent parameters. 

Modified degree-day method X    Based on fixed reference temperature of 

18.3°C. 

Variable-base degree-day method, or 

3-P change point models 

(Fels 1986; Reddy et al. 1997; Sonderegger 

1998) 

X X  X Variable base reference temperatures. 

Change-point models: 4-P, 5-P 

(Fels 1986; Kissock et al. 1992) 

 X  X Uses daily or monthly utility billing data 

and average period temperatures. 

ASHRAE bin method and data-driven bin 

method 

(Thamilseran and Haberl 1995) 

X X   Hours in temperature bin times load for 

that bin. 

ASHRAE TC 4.7 modified bin method 

(Knebel 1983) 

X    Modified bin method with cooling load 

factors. 

Multistep parameter identification 

(Reddy et al. 1999) 

   X Uses daily data to determine overall heat 

loss and ventilation of large buildings. 

Dynamic methods 

Thermal network 

(Rabl 1988; Reddy 1989; Sonderegger 

1977) 

X   X Uses equivalent thermal parameters (data-

driven mode). 

Response factors 

(Kusuda 1969; Mitalas 1968; Mitalas and 

Stephenson 1967; Stephenson and Mitalas 

1967) 

X    Tabulated or as used in simulation 

programs. 

Fourier analysis 

(Shurcliff 1984; Subbarao 1988) 

X  X X Frequency domain analysis convertible to 

time domain. 

ARMA model 

(Rabl 1988; Reddy 1989; Subbarao 1986) 

   X Autoregressive moving average (ARMA) 

model. 

PSTAR 

(Subbarao 1988) 

X  X X Combination of ARMA and Fourier 

series; includes loads in time domain. 

Modal analysis 

(Bacot et al. 1984; Rabl 1988) 

X   X Building described by diagonalized 

differential equation using nodes. 

Differential equation 

(Rabl 1988) 

   X Analytical linear differential equation. 

Computer simulation: DOE-2, BLAST, X  X  Hourly and subhourly simulation 
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EnergPlus 

(Crawley et al. 2001; Haberl and Bou-

Saada 1998; Manke et al. 1996; Norford et 

al. 1994) 

programs with system models. 

Computer emulation (HVACSIM+, 

TRNSYS) 

(Clark 1985; Klein et al. 1994) 

X    Subhourly simulation programs. 

Artificial neural networks 

(Kreider and Haberl 1994; Kreider and 

Wang 1991) 

 X   Connectionist models. 

 
In general, the construction of data driven models is based on the least-squares regression. The 
considered model uses the least-squares regression to determine the regression coefficients. 
Generalized least-squares regression seeks to estimate the model coefficients that minimize the sum of 
the squared error between predicted and actual observations.  The matrix of dependent observations,  
Y , is equal to the product of the matrix of independent observations, X, and the matrix of estimated 
regression coefficients, β, plus an error term, E:. 
 

 EXY += β  (5) 
Solving for β gives: 
 
 YXXX TT 1)( −=β  (6) 

To calculate the model residuals, the predicted values of the dependent variable, Ŷ  , are computed 
from: 
 
 βXY =ˆ   (7) 

The matrix of residuals, E, is then computed from: 
 

 E = Y -  Ŷ  (8) 
 
The root mean squared error, RMSE, is computed from: 
 

 RMSE =  
)()(

)ˆ( 2

pn

YXYY

pn

YY TTT

−
−=

−
−∑ β

 (9) 

 
where n is the number of data observations and p is the number of regression coefficients. 
The root mean squared error of the model is a measure of the scatter of the data around the model. 
The matrix of the standard errors of the regression coefficients, S, is computed from: 
 

 S = 1)( −XXRMSE T   (10) 

 
The standard error of a regression coefficient is a measure of the uncertainty of the estimate of the 
regression coefficient. 



31 
 
 

The squared correlation coefficient, R2, is computed from: 
 

 R2 =  
∑

∑
−
−

−
2

2

)(

)ˆ(
1

YY

YY
 (11) 

 
 



32 
 
 

4.2 Steady-state inverse models 

The simplest steady-state inverse model regresses monthly actual energy consumption data against 
average outdoor air temperatures, or in general outdoor climate parameters. More robust and efficient 
methods include multiple linear regression (MVR), change-point linear regression, and Variable-
Based Degree Day regressions.  The advantage of steady-state inverse models is that their use can be 
automated and applied to large data sets when, for example, billed consumption data and average daily 
temperatures are available.  
 
Moreover, by the multivariate approach it is possible to characterize building energy use with a few 
available input variables. The model should contain variables not affected by the retrofit and likely to 
change from pre-retrofit to post-retrofit periods. Other variables, such as changes in operating hours, 
occupancy levels, should be included in the model if these are not energy conservation measures 
(ECMs) but variables that may change during the post-retrofit period. 
 
Proper care must be taken, however, when using MVR models to predict energy consumption.  In 
general, the addition of independent variables to the model will always increase the strength of the 
correlation; however, the relative uncertainty (standard error) of each regression coefficient, and hence 
its predictive value, will decrease.  In addition, multi-colinearity between independent variables 
increases the uncertainty with which the values of the regression coefficients are known.  Singular 
Value Decomposition [4] and Principle Component Analysis [23; 50] have been shown to reduce the 
effects of multi-colinearity. 
 
Claridge [58] summarized the most common methods for developing inverse models of measured 
energy use.  The primary methods include variable-base degree-day (VBDD) models, multivariate 
regression (MVR) models, change-point (CP) regression models, and combination CP/VBDD/MVR 
regression models. 
 
In the following, on the basis of a literature review, some numerical algorithms and equations used to 
find general least-squares regression for the models mentioned above are described. 
 
In Leslie et al. [43] the results of an investigation are presented to determine which factors related to 
climate, occupant productivity and time-related parameters exert significant influence on energy 
consumption.  The regression model shows that energy consumption in general depends on heating 
degree-days, production level, and labor force strength. Data gathered included production level by 
product class, heating degree-days, cooling degree-days, energy consumed by fuel type, labor force, 
direct and indirect man hours, etc.  The best predictors among competing parameters were selected 
based on maximizing the adjusted multiple correlation coefficient.  In general, heating degree-days 
and cooling degree-days are the most important parameter for predicting total energy consumption, 
with labor force strength and production level providing additional explanatory power. 
Katipamula et al. [36] found that a multi linear regression provides better accuracy than a single 
variable model for modeling energy consumption.  Many independent variables have been used to 
perform a MLR model including, cooling-degree days, heating-degree days, wind speed and direction, 
humidity, refrigeration type, exhaust air, supply air, average shading in winter, average shading in 
summer and so on.  Different buildings used different independent variables, some up to ten and others 
as few as two. Nevertheless, MLR models based on engineering principles are difficult to develop 
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because they require knowledge of the HVAC system operation and how it is related to other building 
systems.  Another disadvantage of MLR is the variables should be independent of each other, which is 
not the case in reality. 
 
In Freire et al. [15] regression equations are used for predicting energy consumption by means of 
outdoor climate variables and HVAC systems properties in an easier and more rapid way than building 
energy simulation tools. The independent variables (input data) are heating, ventilation and air 
conditioning (HVAC) power, outdoor temperature, relative humidity and total solar radiation. The 
methodology for obtaining the regression equations is based, firstly, on defining a couple of linear 
Multiple-Input/Single-Output (MISO) models, since two main outputs are involved, (i.e. indoor 
temperature and relative humidity). Validation procedures have shown very good agreement between 
the regression equations and the simulation tool for both winter and summer periods. 
 
Abushakra et al. [1] showed the advantage of including four driving variables in the hourly modeling 
of the energy use which include (1) outdoor temperature, (2) outdoor specific humidity potential, (3) 
lighting and receptacles, and (4) occupancy. This paper showed that the occupancy variable can be 
derived from the lighting and receptacles load profiles that are becoming more and more available. 
 
In Catalina et al. [10] a development of regression models is presented to predict the monthly heating 
demand for the single-family residential sector in temperate climates, with the aim to be used by 
architects or design engineers as support tools in the very first stage of their projects in finding energy 
efficient solutions. All the energy prediction models were based on an extended database obtained by 
dynamic simulations for 16 major cities of France. The inputs for the regression models are the 
building shape factor, the building envelope U-value, the window to floor area ratio, the building time 
constant and the climate which is defined as function of the sol-air temperature and heating set-point. 
 
About the assessment of energy savings, the most straightforward way to measure energy savings is to 
compare pre and post-retrofit energy use. This method implicitly assumes that the change in energy 
consumption between the pre-retrofit and post-retrofit periods is caused purely by the retrofit. 
However, the energy consumption is also influenced by other factors including weather conditions, 
occupancy, internal loads and building operating procedures which may change between the pre and 
post-retrofit periods. If these changes are not considered, savings determined by this simple method 
will be erroneous [33]. The most common adjustment discussed in the literature [37] is for changing 
weather conditions between the baseline and post-retrofit periods through the use of the data driven 
approach.  In general, two types of measured savings, actual and normalized, can be determined. 
Actual savings [22; 12; 2] are calculated as the difference between the energy use predicted by the 
baseline model and measured post-retrofit energy use. The steps involved are:  
 

• measure energy use and influential variables during the baseline period; 
• create a mathematical model of baseline energy use as a function of influential variables; 
• measure energy use and influential variables during the post-retrofit period; 
• apply influential variables from the post-retrofit period to the baseline model to estimate what 

energy use would have been without the retrofit; 
• subtract the predicted baseline energy use from the measured post-retrofit energy use to 

estimate savings. 
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Kissock  [40] describes a  method for calculating savings from measured data using change-point 
models for weather adjustment. It includes the physical basis for change-point models in commercial 
buildings, algorithms for change-point models, and a method to estimate the uncertainty of savings. 
 Normalized savings [50] estimate how much energy would be saved during a ‘normalized’ year. 
Calculating normalized savings requires developing a statistical model of energy use as a function of 
influential variables for both the pre and post-retrofit periods and then driving each model with 
"normal" conditions to calculate the normalized annual consumption during each period.  
  
In Haberl et al. [20] measured hourly data are used to construct a baseline model.  The data can then 
be used to predict building consumption had the retrofit not taken place.  Measured post-retrofit data 
are compared to predicted data to determine savings. Regression models consist of billing and/or 
monitored data, utilized in one-, two-, three-, four-, or five-parameter change-point models, or MLR 
models. 
 
Kissock et al. [41] describe a procedure for estimating weather-adjusted retrofit savings using 
ambient-temperature regression models.  The appropriate use of both linear and change-point models 
for measuring energy savings is also discussed.  Ambient-Temperature is used as the single 
independent variable because it both eliminates problems associated with multi-colinearity problems 
and reduces data collection to a single easily acquired parameter. 
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4.3 Focuses 

 
4.3.1 Multiple linear regression 

 
4.3.2 Logistic regression analysis 

While linear regression analyses the effect of one or more influencing variables, Xj, on a continuous 
outcome variable, logistic regression analysis needs to be used when the outcome variable, Y, is 
binary, e.g. either 0 or 1. The difference between linear and logistic regression models is thereby, that 
while the linear model describes the changes in the outcome variable directly, the logistic model 
describes the probability, p=P(Y=1), of the outcome variable being one of the two possible values. As 
a consequence, even though the outcome variable is binary, the probability, p, can take all values 
between 0 and 1.  
 
In general, a linear relationship between the odds p/(1-p) and the logarithm of the odds, called logit, 
log[p/(1-p)] is assumed, i.e. 
 
 Logit(p) = log[p/(1-p)] = α+βX, (12) 
 
which is mathematically equivalent with  
 

   [6] (13) 

 
There are two possible applications to the statistical analysis of the total energy use: (1) as input model 
for occupant behavior in the forward approach, or (2) to predict the probability of binary “energetical 
events”. The former is described within the modeling report of the Task-Force Occupant Behavior of 
Annex 53 and not dealt with here. Applications related to energetical events can be addressed to the 
analysis 
 

• of the probability of a building occupant to belong to one of two groups, an energy-saving or 
energy-wasting group [46, 42], 

• of factors which influence the probability of an energy usage above or below a certain 
threshold level, e.g. the median of a number of energy usages, or electricity consumption 
classes [17] or 

• of the probability of a change in the energy usage, e.g. due to retrofitting measures. 
 
Except for a few applications as listed above, the approach is not very common and linear regression 
analysis is much more widespread. The reason lies probably in the continuous nature of energy usage, 
which does not necessitate a logistic approach. 
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4.3.3 Variable-Base Heating and Cooling Degree-Day Models 

In the Variable-Base Heating and Cooling Degree-Day the algorithm finds the base-temperature or 
balance point temperature that gives the best statistical fit between energy consumption and the 
number of variable-base degree-days in each energy use period.   
 
The heating balance-point temperature is defined as the temperature at which the heat gain from 
internal occupants and equipment balances heat loss through the building envelope. At outdoor air 
temperatures above the  balance-point temperature, no thermal energy is needed for space heating. 
Similarly, cooling energy use frequently increases as outdoor air temperature increases above some 
cooling balance-point temperature, below which no space cooling is necessary. 
 
In general, the closer the outdoor air temperature is to Tbal, the greater is the uncertainty.  The degree-
day method, like any steady-state method, is defective for estimating consumption during mild 
weather. In fact, consumption becomes most sensitive to occupant behavior and cannot be predicted 
with certainty. 
 
About variable-base heating and cooling degree-day method, IMT can find best-fit variable-base 
degree-day models of  type: 
 
 Y  = β1  +  β

2
 HDD(β3) (14) 

 Y  = β1  +  β
2
 CDD(β3) (15) 

 
where β1 is the constant term,  β2  is the slope term, and HDD(β3) and CDD(β3) are the number of 
heating and cooling degree-days, respectively, in each energy data period calculated with base 
temperature β3.  The number of heating and cooling degree-days in each energy data period of n days 
is: 

 HDD(β3) = ∑
=

+−
n

1i
i )T3(β  (16) 

 CDD(β3) = ∑
=

+−
n

1i
i 3)(T β   (17) 

where Ti is the average daily temperature. 
 
4.3.4 Change-Point Models 

There are several types of regression change point models as a function of the type of HVAC-building 
system analyzed: 
 
(i) Two-Parameter Model (2-P), based on a  simple linear regression of type: 
 
 Y = β1 + β2 X1  (18) 
 
where β1 and β2 are regression coefficients, X1 is the independent variable and Y is the dependent 
variable. 2-P models are appropriate for modeling building energy use that varies linearly with outdoor 
air temperature.   
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(ii)  Three-Parameter Cooling and Heating Models (3-P), is characterized  by a  three-parameter 
change-point models of the type described by Kissock et al. [38]: 
 

 Yc  =  β1  +  β2 ( X1 - β3 )+           and          Yh  =  β1  +  β2 ( X1 - β3 )-  (19) 
 
Where β1 is the constant term, β2 is the slope term, and β3 is the change-point. The ( ) + and ( )- 
notations indicate that the values of the parenthetic term shall be set to zero when they are negative 
and positive, respectively. 3P models are appropriate for modeling building energy use that varies 
linearly with an independent variable over part of the range of the independent variable and remains 
constant over the other part.  For example, 3PC models, using outside air temperature as the 
independent variable, are often appropriate for modeling the whole-building electricity use in 
residential electric air conditioning. Similarly, 3PH models, using outside air temperature as the 
independent variable, are often appropriate for modeling heating energy use in residences with gas or 
oil heating. 
 
Also found is a combination of three-parameter and multi-variable regression models (3P-MVR), with 
up to four independent variables, of the type: 
 

 Yc  =  β1  +  β2 ( X1 - β3)+  +  β4 X2  +  β5 X3  +  β6 X4   (20) 

 Yh  =  β1  +  β2 ( X1 - β3 )-  +  β4 X2  +  β5 X3  +  β6 X4
  (21) 

 
where X1 is typically the external temperature, and X2, X3 and X4 are optional independent variables. 
 
(iii) Four-Parameter Model (4P), is of the type described by Kissock et al. [39]: 
 

 Y  =  β1  +  β2 (X1
 - β4 )-  +  β3 (X1

 - β4 )+  (22) 

 
Where β1 is the constant term, β2 is the left slope, β3 is the right slope and β4 is the change point.  An 
inverse model can also consider a combination of four-parameter multi-variable regression models 
(4P-MVR), with up to three independent variables, of the type: 
 

 Y  =  β1  +  β2 (X1
 - β4)-  +  β3 ( X1

 - β4 )+  +  β5 X2  +  β6 X3 (23) 

 
where X1 is typically temperature, and X2 and X3 are optional independent variables. 
Four-parameter models are appropriate for modeling heating and cooling energy use in variable-air-
volume systems and/or in buildings with high latent loads.  In addition, these models are sometimes 
appropriate for describing non-linear heating and cooling consumption associated with hot-deck reset 
schedules and economizer cycles [40]. 
 
(iv) Five-Parameter Model (5-P), described by: 
 
 Y  =  β1 +  β

2
 (X1 - β4 )-  +  β3 ( X1 - β5 )+  (24) 
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Where β1 is the constant term, β2 is the left slope, β3 is the right slope, β4 is the left change point, and 
β5 is the right change point. An inverse model can also consider a combination of five-parameter 
multi-variable regression models (5P-MVR), with up to two independent variables, of the type: 
 

 Y  =  β1 +  β
2
 ( X1 - β4 )-  +  β3 ( X1 - β5 )+  +  β6 X2  (25) 

 
where X1 is typically temperature and X2 is an optional independent variable. (5-P) models are 
appropriate for modelling energy consumption data that include both heating and cooling, such as 
whole-building electricity data from buildings with electric heat-pumps or both electric chillers and 
electric resistance heating or fan electricity consumption in variable-air-volume systems. In Table 4-3, 
the different model equations of the single-variate approach are described and they are also drawn in 
Figure 4-2. 
 

Table 4-3: Single-variate and change point models for the heating mode (ASHRAE, [14]) 
Model Type Independent 

Variable(s) 
Model equations Examples 

One-parameter or 
constant (1-P) 

None E=β1 Non-weather-sensitive demand 

Two-parameter 
(2-P) 

Temperature E=β1+β2(T)  

E=β1+β2(DDBT) 

E=β1+β2(β3-T)+ 

Seasonal weather-sensitive use 
(fuel in winter, electricity in 

summer for cooling) 

Three-parameter 
(3-P) 

Degree-days/ 
Temperature 

E=β1+β2(T-β3)
+  

E=β1+β2(β4-T)+-
β3(T−β4)

+ 
Energy use in commercial 

buildings 
Four-parameter 
change point (4-P) 

Temperature 

E=β1+β2(β4-
T)++β3(T-β4)

+ 
 

Degree days/ E=β1-
β2(DDTH)+β3(DDTC) 

Heating and cooling supplied by 
same meter 

Five-parameter 
(5-P) 

Monthly mean 
temperature 

E=β1+β2(β4-
T)++β3(T-β5)

+ 
 

Note: DD denotes degree-days and T is monthly mean daily outdoor dry-bulb temperature. 
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Figure 4-2: Top row-left: 2P cooling and heating models. Second row from top-left: 3P cooling and 
heating models. Top row-right: 4P cooling and heating models. Second row from top-right: 5P 

heating and cooling model. 
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4.4 Dynamic Inverse Models 

Dynamic inverse models represent sophisticated forms of inverse models. The various existing 
methodologies include, among the others: 
 

• ARMA models, 
• Fourier series, 
• Artificial Neural Networks – ANNs. 

 
These models take into account the dynamic effects using the time variation of the parameters as a key 
aspect for understanding the energy behavior of the analyzed system. These models are used to 
process inter-correlated forcing functions or independent parameters. 
 
Dynamic inverse models are capable of modeling complex systems which are dependent on more than 
one independent parameter, on the other hand they require more measurements to develop the model. 
Among the previous list of dynamic inverse models, ANNs represent the most used tool for their 
accuracy for modeling and forecasting and for their automated implementation in commercial software. 
As a consequence, a larger discussion is addressed to ANNs in this report. 
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4.5 Focuses 

4.5.1 Artificial neural network 

The ANNs are inductive models that represent an alternative approach with respect to the deductive 
models. In building energy modeling, the ANNs are used as surrogate of analytic computer codes to 
evaluate the energy flow and system performance, i.e. they are useful for forecasting and modeling.  
The ANNs learn from key information patterns allowing for the discovery of complex relationships 
between the variables. The ANNs allow robust processing even from noisy data. On the other hand 
they provide a limited knowledge of process mechanisms. 
 
It is well-known from literature that one of the most interesting features of neural models is their 
ability to handle even incomplete data. Several studies have shown that in some cases forecasting 
models for energy consumption based on neural networks are more accurate, even if more complex 
than those based on multiple linear regression. As briefly summarized below, ANNs take inspiration 
from neural systems. 
 
Biological and artificial neurons and artificial neural network principles 
Figure 4-3 shows a simplified model of the structure of the biological neuron. The main body of the 
cell is called the "soma" where the nucleus is placed. The cell body has fibers attached to it called 
dendrites that receive signals from other neurons. 'Axon' is the single long fiber which spreads from 
the soma and extends into fibers connecting to many other neurons at the synaptic junction. Each 
neuron receives stimuli from other neighboring neurons and produces output when inputs overcome 
the threshold limit that a neuron can hold. 
 

 
Figure 4-3: Simplified model of the structure of the biological neuron 

 
An artificial neural network is a massively parallel distributed processor that has a large number of 
artificial neurons interconnected through weighted synaptic connections. Connections can be 
"adjusted" through a network training process based on a given pattern rather than on predefined rules. 
In other words, this process allows the network to learn the “rule” on which is based a physical 
phenomenon starting from known situations and apply it to new situations. This feature and the 
relative simplicity of implementation and programming encourages the application in prediction tasks. 
In addition, the use of a nonlinear model allows the identification of interactions between independent 
variables without exploiting complex models. A neural network architecture commonly used is the 
Multi Layer Perceptrons. Its basic structure consists of a set of units organized in layers; each element 
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produces its output applying an activation function to a weighted linear combination of input signals. 
The weights of this linear combination are those associated with connections that affect the neuron. 
The activation function, ACTf , determines a relationship between the activation of the neuron and its 

output. 
The equation for a single layer with one neuron can be written in the form: 
 

 









= ∑

=

n

j
jjACT Xwfy

1

  (26) 

 
From the functional point of view the above equation describes the following model: 
 

 
Figure 4-4: Activation function applied to summed data 

 
 
In the following we describe the most used feed-forward architecture. The feed-forward neural 
network presents the neurons arranged in layers. All neurons in a layer are connected to all neurons in 
the next layers through uni-directional weighted links. The neurons of the input layer do not perform 
computation, but only feed input information to the neurons of the first hidden layer. The last layer 

represents the output from which the response of the network comes. The neuron output S
jo is 

computed by passing the weighted sum (S
jiw  are the weights) of its inputs 1−S

jo  by a activation 

function S
jACTf ,  
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(27) 

 
where s denotes the sth layer and j=1,…,ns with ns the number of neurons of the  sth layer. The weights 
are obtained using the “forward propagation” and “backward propagation” algorithms. 
ANNs have been used successfully in the following fields: 
 

• classification, i.e. pattern recognition, 
• forecasting, i.e. electrical and thermal load forecasting, 
• optimal control, i.e. adaptive control, 
• optimization, i.e. building energy management. 

 
With reference to the application of neural networks to energy systems, ANNs have been employed to 
model solar water heating systems. Kalogirou et al. [24] developed an ANN to forecast useful energy 
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produced from the system and the stored water temperature rise. The input data related to size and 
performance characteristics were: the collector area, storage-tank U-value, tank type, storage volume 
and type of system. In addition, the input data related to the weather conditions were real measures of 
total daily solar radiation, mean ambient air temperature and the water temperature in the storage tank 
at the beginning of a day. The whole data set was used to train the ANN in order to treat unusual cases. 
The predictions were confined within 10% and it was shown that the proposed method presents a high 
grade of accuracy. 
 
In Kalogirou et al.[25], the long term performance prediction of solar domestic water heating systems 
was also evaluated using ANNs. The authors tested and modeled thirty thermosyphon solar domestic 
water heating systems following the procedures contained in the standard ISO 9459-2 at three 
locations in Greece. Monthly data, calculated thorough a modeling program based on standard ISO 
9459-2, were used to develop two artificial neural networks. 
 
The output of the first network was the solar energy produced from the system under suitable physical 
constrains (see Kalogirou et al. [26] for details) and the output of the second network was the solar 
energy produced from the system and the average quantity of hot water per month at demand 
temperatures of 35 and 40°C. The input data in both networks were geometric and performance 
characteristics of each system and various climatic data. In the second network, among the other input 
was also used the demand temperature. 
 
The statistical coefficient of multiple determinations corresponding to the first network was equal to 
0.9993 while for the second network for the two output parameters the same coefficient was 0.9848 
and 0.9926, respectively. Also, the accuracy of prediction was investigated using unknown data. In the 
first case the coefficient was equal to 0.9913 and in the second case was equal to 0.9733 and 0.9940 
for the two output parameters. 
 
With reference to the application of neural networks to individual buildings, in Datta et al. [57] the 
authors proposed the use of an ANN to forecast electricity demand in a supermarket. In a supermarket 
the main demand categories are refrigeration systems, HVAC equipment and lighting. In addition the 
independent variables that affect the consumption of the refrigeration systems are building envelope; 
temperature and humidity and the internal environmental conditions. 
 
The authors claim that in trying to minimize energy consumption the various energy consuming 
subsystems cannot be viewed in isolation but their interactions should be considered. 
For this reason, the authors suggest that ANNs are flexible tools and not system specific. As a 
consequence ANNs can be adapted to different building types, HVAC systems and refrigeration 
equipment. 
 
The Figure 4-5 below shows the prediction accuracy of the ANNs modeling. The building is a 
Safeway supermarket situated in Airdrie, Scotland. The ANN was used to predict electricity demand 
in the supermarket. The actual measured data collected from the store was used to develop feed-
forward neural networks including three layers: one input, one hidden, and one output layer. Seven 
networks were constructed by varying the number of input variables, i.e. input nodes, n. The number 
of nodes of the hidden layer was varied as a function of the input nodes as (2n + 1). The back-
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propagation algorithm was employed to train all the networks in order to minimize the mean square 
error between the output of the network and the actual value. 
 

 
Figure 4-5: Prediction accuracy of the ANNs modeling 

 
 
The following input variables were included: 
 

• Day, 
• Time, 
• Temperature and relative humidity in the store, 
• External air temperature and humidity, 
• Total electrical power consumption of the store, 
• Electrical power consumption of the refrigeration packs, 
• Gas Consumption, 
• Underfloor heating flow and return temperatures. 

 
The authors noted that all the networks have a good correlation between the target and network output. 
The network trained with data extending on a longer period, i.e. 4 months instead of the 1 month used 
for the other networks, presented the lowest correlation coefficient and highest RMS error. This 
confirms that using a short-term data-set may be sufficient to reliably predict electrical demand in 
commercial stores on a half hour time scale. 
 
The authors estimated the weight of each independent variable on the prediction accuracy of the 
dependent variable. They noted the time of day is the most significant independent variable. This 
result led to the conclusion that more detailed analysis should be conducted to determine the relative 
importance of each variable. 
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The prediction performance of ANNs and regression analysis based on the same data sets were 
compared using the correlation coefficient. The correlation coefficient was equal to 0.95 for the ANNs 
as compared to 0.79 for regression analysis. 
 
In Kalogirou et al. [27], ANNs were used for forecasting the building's heating loads using the 
minimum amount of input data listed below.  The data used were: 
 

• areas of windows, walls, partitions and floors, 
• type of windows and walls, 
• classification on whether the space has roof or ceiling, 
• design room temperature. 

 
The network output was the heating load. More than two hundred cases were considered to develop a 
network capable of working with only some basic building areas and a differentiation of the various 
elements according to their structure. Indicative U values were used to describe different building 
materials. The network yielded predictions within 9%. The authors concluded that this error did not 
influence the sizing of the actual radiator chosen for the particular room because commercial radiators 
are available only with different heating loads (see Kalogirou et al. [29, 28, 30, 31, 32, 33, 34, 35] for 
more details). 
 
With reference to the application of neural networks to a large building stock, Aydinalp-Koksal et al. 
[2] investigated the use of a CDA method and of an ANN to model the residential end-use energy 
consumption. In particular, the ability of the CDA model to predict and to characterize the energy end-
uses was compared with those of an ANN. 
 
Two data sources were used for the development of the CDA and ANN model: the data from the 1993 
Survey of Households Energy Use (SHEU, Statistics, Canada, 1993) database and the 1993 heating 
and cooling degree day data for the cities in which the households in the CDA data set are located. 
Actually, SHEU database is the most exhaustive energy related database for the Canadian residential 
sector. The data were collected by conducting a mail-out survey that included several questions (376). 
The database was representative of the Canadian housing stock, and contains detailed information on 
the building construction, space heating/cooling and DHW heating equipment, household appliance 
and some socioeconomic characteristics of the occupants for 8767 households in Canada. At the same 
time, the electricity billing data and natural gas billing data of the households in the 1993 SHEU 
database were used to develop the models. The weather and ground-temperature data for the locations 
were obtained from Environment Canada (http://www.msc-smc.ec.gc.ca/cmc/index_e.html). The 
variables used in this study are presented below.  
 

• Heating degree days, 
• Cooling degree days, 
• Ground temperature, 
• Dwelling type, 
• Heated living area, 
• Dwelling year construction, 
• Windows type, 
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• Door types, 
• Presence of heated basements, attic or garage, 
• Presence of programmable thermostat, 
• Presence of heat recovery ventilation system, 
• Efficiency of the boiler, 
• Age of the boiler, 
• Number of each appliance present in the house, 
• Total number of incandescent, fluorescent, and halogen lamps, 
• Central A/C unit usage, 
• Window A/C unit usage, 
• Average indoor temperature, 
• Number of occupants, 
• Presence at home, 
• Dwelling ownership, 
• Number of adults, 
• Number of children. 

 
The information is related to climate (HDD, CDD, local mean daily temperature, etc.), building 
envelope (heated living area, dwelling construction year, number of windows, etc.), building 
equipment (thermostat, boiler, ventilation systems, appliances, etc.), building operation and 
maintenance (age of the boiler, central A/C unit usage, etc.), indoor environmental quality (average 
indoor temperature, etc.), occupant behavior (number of occupants, presence at home, etc.) and socio-
economic factors (households income, size of area of residence, etc.). 
 
The ANN developed to model the end-use energy consumption consists of three separate models: 
 

• NN model for appliance, lighting and space cooling (ALC) end-use energy consumption, 
• NN model for space heating (SH) end-use energy consumption, 
• NN model for domestic hot water (DHW) heating end-use energy consumption. 

 
On the basis of the data gathered from different sources, the input and output of the model were 
defined. The input units of the networks used were gathered from the SHEU database in order to 
describe the construction details and usage characteristics of the houses; specifications and usage of 
space heating and cooling equipment appliances and lighting; socioeconomic characteristics of the 
occupants; and weather characteristics. Obviously, the number and choice of input units was different 
for each of the three networks performed, and the units were selected on the basis of their contribution 
on the prediction performance of the end-use network. The results of the three performed networks 
showed a good prediction accuracy with a very high prediction performance, but the accuracy was 
strictly related to the quantity of the information in the training datasets. The models were performed 
by isolating the effects of several socioeconomic factors on end-use energy consumption. This 
capability represents an interesting result, because of the impact of human behavior on the building 
energy consumption. 
 
The authors highlighted that both methods could be used to model residential energy consumption, but 
each of them had different capabilities, advantages and disadvantages. The major advantages of the 
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CDA model are that it is easier to develop and to use and does not require detailed data. On the other 
hand, it is a regression-based model. For this reason, the database has to contain a large number of 
dwellings and the models do not provide much detail or flexibility. By consequence, its capability to 
assess the impact of energy conservation possibilities is very limited. An important point to highlight 
in this comparison is related to socioeconomic factors. Although it is possible to include 
socioeconomic parameters in the model (if such data is available in the database), the CDA model is 
unable to evaluate the effects of some of these parameters (dwelling ownership and size of area of 
residence) because of the limited number of variables included in the model, due to statistical 
considerations. On the other hand, ANNs are able to evaluate the effects of several socio-economic 
factors on end-use energy consumption, such as household income, dwelling type and ownership, 
number of children and adults, and area of residence. 
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4.5.2 Data Mining 

Data mining is proposed as a tool to analyze measured building-related data. Data mining techniques 
excel at automatically analyzing huge amounts of data for useful but hidden information. 
 
What is data mining? 
In the past decade, different definitions of data mining have been given by various researchers. For 
example, Hand et al. [23] define data mining as “the analysis of large observational data sets to find 
unsuspected relationships and to summarize the data in novel ways so that data owners can fully 
understand and make use of the data.” As defined by Cabena et al. [8], data mining is “an 
interdisciplinary field bringing together techniques from machine learning, pattern recognition, 
statistics, databases, and visualization to address the issue of information extraction from large 
databases.” Based on these statements, it can be concluded that data mining is essentially a 
combination of multi-disciplinary approaches. It is often used to extract hidden but useful patterns 
from a large volume of data and to transform the data into knowledge that could benefit further work. 
Data mining has been successfully applied in many scientific, medical, and application domains (e.g., 
banking, bioinformatics, new materials identification, fraud detection, and telecommunications). It 
was also identified by the MIT Technology Review (MIT Technology Review, 2001) as one of the ten 
emerging technologies that may change the world. Three widely accepted and implemented data 
mining techniques are: data classification, clustering analysis, and association rule mining. 
 
Some basic terms and concepts in relation to data mining 
Useful terminologies include the following:  
 

• Dataset, Attribute, and Instance: a dataset is a set of data items. It is roughly equivalent to a 
two-dimensional (i.e. column and row) spreadsheet or database table, as shown in Figure 4-6. 
Each database table consists of a set of attributes (usually in different columns or fields) and 
stores a large set of instances (usually in rows or records). Consider an HVAC system with 
100 monitored parameters. Each parameter can be considered an attribute, and a record of all 
these parameters in a specific time point can be considered an instance. 

 

Attribute 1 ... Attribute m

Instance 1

…

Instance i

Instance j

...

Instance n

x ... x

... ... ...

x ... x

x ... x

... ... ...

x ... x

... ... ... ...

Attribute

Instance

 
Figure 4-6: A schematic diagram of dataset, attribute and instance 

 
• Target attribute and Predictor attribute: Target attribute is the attribute predicted as a function 

of other attributes (i.e., predictor attributes). For example, the building energy consumption is 
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the target attribute, and could be predicted as a function of building-related parameters such as 
floor area and number of occupants (i.e., predictor attributes). 

 
Data mining techniques: Data Classification and Decision Tree  
 
Overview of Decision Tree 
 
The decision tree method is one of the most commonly used data mining methods [47, 22]. It uses a 
flowchart-like tree structure to segregate a set of data into various predefined classes, thereby 
providing the description, categorization, and generalization of given datasets. As a logical model, a 
decision tree shows how the value of a target variable can be predicted by using the values of a set of 
predictor variables. Figure 4-7 presents a decision tree indicating whether residents turn room air 
conditioners (RAC) on or off in their rooms in the cooling season. For this example, assume 100 
instances are used to build this decision tree, and that each instance has three attributes: outdoor air 
temperature, room occupancy, and the operating state of RAC. 
 

 
Figure 4-7: Schematic illustration of a simple hypothetical decision tree 

 
The target variable for the above decision tree is RAC operating states, with potential states being 
classified as either turned on or off. The predictor variables are outdoor air temperature (≤ 26 °C or > 
26°C) and room occupancy (empty or not). As shown in Figure 4-7, a decision tree consists of three 
kinds of nodes: root node, internal node, and leaf node. Root nodes and internal nodes denote a binary 
split test on an attribute while leaf nodes represent an outcome of the classification (i.e., a categorical 
target label). Moreover, the numbers in the parentheses at the end of each leaf node depict the number 
of instances in this leaf. If some leaf nodes are impure (i.e., some records are misclassified into this 
node), the number of misclassified instances will be given after a slash. For example, (60/5) in the left 
most leaf in Figure 4-7 means that among the 60 instances having an outdoor temperature lower than 
or equal to 26 °C that have been classified as turned off, 5 of them actually have the value turned on. 
By using this decision tree, the RAC operating state classification (i.e., turn on or turn off) can be 
predicted. For example, if the outdoor air temperature is higher than 26 °C and the room is not empty, 
occupants will turn the RAC on; otherwise, they will turn it off. 
 
Decision tree generation is in general a two-step process, namely learning and classification, as shown 
in Figure 4-8. In the learning process, the collected data is split into two subsets, a training set and a 
testing set. Creation of the training and testing sets is an important part of evaluating data mining 
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models. Usually, most of the instances in the database are arbitrarily selected for training and the 
remaining instances are used for testing. Note that the training and testing sets should come from the 
same population but should be disjointed. Then, a decision tree generation algorithm takes the training 
data as an input, with the corresponding output being a decision tree. Commonly used decision tree 
generation algorithms include ID3 [47], classification and regression trees (CART) [7], and C4.5 [48]. 
In the classification process, the accuracy of the obtained decision tree is first evaluated by making 
predictions against test data. The accuracy of a decision tree is measured by comparing the predicted 
target values with the true target values of the test data. If the accuracy is considered acceptable, the 
decision tree can be applied to a new dataset for classification and prediction; otherwise, the reason for 
any inaccuracies should be identified and corresponding solutions should be adopted to address these 
problems. 
 
Decision Tree Generation 
 

 
Figure 4-8: Procedure of decision tree generation 

 
The procedure for generating a decision tree from the training data is explained as follows. Initially, all 
instances in the training data are grouped together into a single partition. At each iteration the 
algorithm chooses a predictor attribute that can “best” separate the target class values in the partition. 
The ability of a predictor attribute to separate the target class values is measured based on an attribute 
selection criterion, which can be referred to in data mining textbooks. After a predictor attribute is 
chosen, the algorithm splits the partition into child partitions such that each child partition contains the 
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same value of the chosen selected attribute. The decision tree algorithm iteratively splits a partition 
and stops when any one of the following terminating conditions is met. 
 

(1) All instances in a partition share the same target class value. Thus, the class label of the leaf 
node is the target class value. 

(2) There are no more instances for a particular value of a predictor variable. In this case, a lead 
node is created with the majority class value in the parent partition. 

 
With reference to the application of data classification to a large building stock, Yu et al. [54] 
developed a building energy demand predictive model based on the decision tree method. The model 
can estimate residential building energy performance indexes by modeling building energy use 
intensity (EUI) levels (either high or low). Its competitive advantage over other widely used modeling 
techniques, such as regression methods and ANN methods lies in the ability of the method to generate 
accurate predictive models with interpretable flowchart-like tree structures that enable users to quickly 
extract useful information.  
 
One data source was used for the development of the decision-tree based model: a project entitled 
“Investigation on Energy Consumption of Residents All over Japan” which was carried out by the 
Architecture Institute of Japan from December 2002 to November 2004. For this project, field surveys 
on energy-related data and other relevant information were carried out in 80 residential buildings 
located in six different districts in Japan: Hokkaido, Tohoku, Hokuriku, Kanto, Kansai, and Kyushu. 
The following information was collected: 
 

• Energy end use of all kinds of fuel used by the building at different time intervals; 
• Indoor environment parameters every 15 minutes; 
• Household characteristics; 
• Other issues such as occupant behaviors and energy saving measures; 

 
The following input variables were included: 
 

• Annual average air temperature, 
• House type (detached or apartment), 
• Construction type (wood or non-wood), 
• Floor area, 
• Heat loss coefficient, 
• Equivalent leakage area, 
• Number of occupants, 
• Space heating mode (electric or non-electric), 
• Hot water supply mode (electric or non-electric), 
• Kitchen equipment mode (electric or non-electric). 

 
The output variables were building energy performance indexes (EUI levels, either high or low). 
The model accuracy of predicting the EUI levels is 92%. For comparison, prediction models using 
regression methods and ANN methods were also developed based on the same data set. The accuracy 
of the obtained regression model and ANN model were 72% and 88%, respectively. However, it 
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should be mentioned that the decision-tree model can only predict the EUI levels while the regression 
model and ANN model can predict the EUI values. Moreover, a lot of useful information on building 
energy performance improvement can be extracted from the developed model. For example, it can 
automatically identify and rank significant influencing factors of building EUI. Also, the model can 
provide the combination of significant factors as well as the threshold values that will lead to high 
building energy performance. Based on such information, designers can clearly realize which 
parameter deserves extra attention when designing energy efficient buildings. Another advantage is 
that it can be utilized by users without requiring a lot of computation knowledge. The generated model, 
and the derived information, could greatly benefit building owners and designers; one crucial benefit 
is the reduction of building energy consumption. 
 
Cluster Analysis and the K-means Algorithm 
Cluster analysis is the process of grouping the observations into classes or clusters so that objects in 
the same cluster have a high similarity, while objects in different clusters have a low similarity. Figure 
4-9 shows a clustering schema based on a hypothetical building data table. It contains various energy-
related variables such as outdoor air temperature (T) and building heat loss coefficient (HLC).  
 
The data table consists of m attributes and n instances. Each attribute represents a variable and each 
instance denotes a building. All the instances are grouped into w clusters. These w clusters are 
homogeneous internally and heterogeneous between different clusters [22]. Such internal cohesion and 
external separation are based upon the m attributes; it implies that these attributes have the most 
similar holistic effects on the building energy performance of the same cluster buildings, while the 
effects are significantly distinct for the buildings in different clusters. 
 

 
Figure 4-9: Clustering scheme 

 
The dissimilarity between observations in the database is calculated using the distance between them 
in the cluster analysis. In this study, the most commonly used distance measure, Euclidean distance, 
was used [22]: 
 
  (28) 
 
where k = (xk1, xk2, …, xkn) and l = (xl1, xl2, …, xln) are buildings. xk1, …, xkn are n parameters of 
k and xl1, …, xln are n parameters of l.  
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Commonly used clustering algorithms include K-means, K-medoids, and CLARANS [22]. In this 
study, we employed the K-means, along with the open-source data mining program RapidMiner [49], 
to perform cluster analysis due to its high efficiency and wide applicability.  
 
The K-means algorithm is one of the simplest partition methods to solve clustering problems. Given a 
dataset (D) containing w objects, the K-means algorithm aims to partition these w objects into k 
clusters with two restraints: 1) the center of each cluster is the mean position of all objects in that 
cluster, 2) each object has been assigned to the cluster with the closest center. This algorithm consists 
of given steps: 1) Randomly select k observations from D as the initial cluster centers, 2) Calculate the 
distance between each remaining observation and each initially chosen center, 3) Assign each 
remaining observation to the cluster with the closest center, 4) Recalculate the mean values (i.e., the 
cluster centers) of the new clusters, and 5) Repeat Steps 2 to 4 until the algorithm converges, meaning 
that the cluster centers do not change.  
 
In RapidMiner, the performance of a clustering algorithm is evaluated by the Davies Bouldin index 
(DBI) [13]. This index is defined as the ratio of the sum of average distance inside clusters to distance 
between clusters. 
 

  (29) 

 
where n is the number of clusters, Ri and Rj are the average distance inside cluster i and cluster j by 
averaging the distance between each cluster object and the cluster center, respectively, and Mi,j is the  
distance between cluster centers. The DBI is small if each cluster is comparatively dense while 
different clusters are far from each other. Consequently, a smaller DBI indicates better performance. 
It should be mentioned that the K-means is sensitive to initial cluster centers. Therefore, different 
values should be tried so as to obtain the minimum sum of the distances within a cluster. At the same 
time, the number of clusters should be specified in advance.  
 
With reference to the application of data clustering to a large building stock, Yu et al. [55] developed a 
methodology for examining the influences of occupant behavior on building energy consumption.  
Various factors influence building energy consumption at the same time, leading to a lack of precision 
when identifying the individual effects of occupant behavior. Such effects can be shown by 
‘removing’ the effects of influencing factors unrelated to occupant behavior.  
 
The same data source as the decision-tree based model was used for the development of the clustering 
methodology. The methodology is realized by clustering similar buildings into various groups based 
on the influencing factors unrelated to occupant behavior, so that for each building in the same group 
these factors have similar effects on building energy consumption. Accordingly, the effects of 
occupant behavior can be identified accurately in these groups. The identification of building groups is 
the most important element of this methodology and it is achieved mainly via cluster analysis. 
The following input variables were included. 
 

• Annual mean air temperature 
• Annual mean relative humidity 
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• Annual mean wind speed 
• Annual mean global solar radiation 
• House types (detached or apartment) 
• Building area 
• Equivalent leakage area 
• Heat loss coefficient 
• Number of occupants 
• Space heating mode (electric or non-electric) 
• Hot water supply mode (electric or non-electric) 
• Kitchen equipment mode (electric or non-electric) 

 
The output was the effects of occupant behavior, as well as behavior patterns. Particularly, 
the following data analysis was conducted. 
 

• The analysis of the average annual EUI of different end-use loads for each cluster (this mainly 
indicates the degree to which various behavior influence the total building energy 
consumption). 

• The analysis of the variability in annual EUI of different end-use loads for each cluster (A 
large variability implies that there still remains great potential for energy saving by improving 
occupant behavior related to the end-load uses). 

• The analysis of monthly variations of average end-use loads for each cluster (this mainly 
indicates the effects of occupant behavior over both time and buildings). 

• A reference building for each cluster is defined, and then the energy-saving potential of 
buildings in each cluster can be evaluated by comparison with the reference building. 

• The analysis of monthly average indoor temperature of an air-conditioned room of three 
typical buildings. 

 
Association Rule Mining 
 
In data mining, association rules are often used to represent patterns of parameters that are frequently 
associated together. An example is given to illustrate the concept of association rules. Assume that 100 
occupants live in 100 different rooms in the same building and each room has both a window and a 
door. Moreover, 40 occupants open the windows and 20 occupants open the doors. If 10 occupants 
open both the windows and doors simultaneously, it can be calculated that these 10 occupants account 
for 10% of all the building occupants (10/100 = 10%), and 25% of the occupants who open windows 
(10/40 = 25%). Then, the information that occupants who open windows also tend to open doors at the 
same time can be represented in the following association rule: 
 
  (30) 
 
In this statement, support and confidence are employed to indicate the validity and certainty of this 
association rule. Different users or domain experts can set different thresholds for support and 
confidence according to their own requirements, in order to discover useful knowledge eventually. 
Accordingly, the association rule mining (ARM) can be defined as finding out association rules that 
satisfy the predefined minimum support and confidence from a given database. 
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Mathematically, support and confidence can be calculated by probability, P(X�Y), and conditional 
probability, P(Y|X), respectively (X denotes the premise and Y denotes the consequence in the 
sequence). That is, 
 
  (31)                      
  (32)    
   
Another concept, lift, which is similar to confidence, is commonly used to demonstrate the correlation 
between the occurrence of X and Y when conducting the ARM. Mathematically, 
 

   (33) 

 
Particularly, a lift value greater than 1 represents a positive correlation (the higher this value is, the 
more likely that X coexists with Y, and there is a certain relationship between X and Y [22] while a 
lift value less than 1 represents a negative correlation). If the value is equal to 1, i.e. , the occurrence of 
X is independent of the occurrence of Y, then there is no correlation between X and Y.  Commonly 
used ARM algorithms include the Apriori algorithm and the frequent-pattern growth (FP-growth) 
algorithm [22]. The specific algorithm for these methods are presented in [22]. 
 
With reference to the application of association rule mining to individual buildings, Yu et al. [56] 
developed a methodology for examining all associations and correlations among building operational 
data, thereby discovering useful knowledge about energy conservation.  
 
One data source was used for the development of the methodology: the EV pavilion in Montreal, a 
complex building that mainly includes offices and wet labs,.. This building consists of two parts: the 
ENCS part (17 floors) and the VA part (12 floors). Both parts have their own VAV air-conditioning 
systems. The historical data of the air-conditioning systems in both parts were collected from 
December 2006 to May 2009. In total, 61 parameters of HVAC system operation were monitored at a 
15-minute interval. 
 
The input variables were the above-mentioned 61 parameters. The output was all associations and 
correlations among these parameters. Through analyzing these associations and correlations, we can: 
 

• identify the energy waste in the air-conditioning system (e.g., it was found that, in the fresh air 
handling units, the heat added to the fresh air was first transferred to humidifier water, and 
then simply drained to municipal sewage. This energy waste was confirmed through the 
discussion with the building operator), 

• detect the equipment faults (e.g., it was found that, either the fan 1 or the fan 2, or both of 
them, in a fresh air handling unit has a fault), 

• propose low/no cost strategies for saving energy in system operation (e.g., it was found that, 
the existing operating strategy of extracting exhaust air from the building was to use two of  
three fans while the other one was turned off. Given that these three fans are identical and 
controlled by individual VSD, one possible energy-saving method is to use all these three fans 
instead of two of them). 
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The results obtained could help us better understand building operation and provide opportunities for 
energy conservation. 
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5. Application of the prediction model for building energy use assessment 

5.1 General introduction to case studies 

Thanks to the contributions of the partners participating in ST-C, a classification of the developed 
activities about the assessment of Total Energy Use in Buildings by “inverse (data-driven) methods” 
has been performed. Common questions are faced in the contributions related to the most appropriate 
statistical analysis method according to the database level, the fixed goals of the analysis and the 
dominant influencing factors. This section highlights the relationships among: 
 

• Subject of the analysis, 
• Goal of the analysis, 
• Structure of the database, 
• Adopted method of analysis. 

 
The ongoing activities in Sub–Task C could be divided, according to sub-task structure, with reference 
to the subject of the analysis: 
 

• Large Building Stocks, 
• Individual Buildings, 
• National or Regional level. 

 
Annex 53 partners uniformly faced the two topics, focusing only in one topic or on both, for a total of 
17 contributions. In particular, Austria, France, Germany, and Norway focused on the analysis of 
individual buildings, while Italy and Japan focused on both individual buildings and a large building 
stock, and Canada and Spain contributed for a large building stock. The national or regional analysis 
issue was faced by Italy (regional database), China (national database) and the U.S. (national database) 
as well. As defined in the Annex 53 project, the ST-C analysis of the partners should focus on 
residential or office buildings. In the following table (Table 5-1), the building typologies included in 
the analysis of the provided contributions are delineated. 
 

Table 5-1: Distribution by subject of the analysis of the obtained contributions 
Partner Individual buildings  

 Residential Office Other 

CETHIL, INSA de Lyon 

(France) 
  

Synthetic 

1 school 

Karlsruhe Institute of 

Technology (Germany) 

Synthetic and Extended 

1 Multi- family house 

Synthetic and Extended 

1 Multi-storey office 
 

NTNU Trondheim  

(Norway) 
 

Synthetic and Extended 

1 Office building 
 

Polytechnic of Turin (Italy)  

Synthetic 

1 Office building 

Extended 

1 Office building 
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Tohoku University (Japan) 

Synthetic and Extended 

6 houses 

(single and multi-family) 

  

TU Wien 

(Austria) 

Synthetic 

3 Multi- family houses 

8 Single- family houses 

Synthetic 

2 Office buildings 

 

 

Partner Large building stock 
 Residential Office Other 

CIMNE (Spain)  
Synthetic and Extended 

9 office buildings 
 

Concordia University 

(Canada) 

Synthetic and Extended 

 

4 contributions 

80 houses 

(single and multi-family) 

  

Polytechnic of Turin (Italy)  
Synthetic and Extended 

4000 office buildings 
 

Tohoku University (Japan) 

Synthetic and Extended 

682 houses 

80 houses 

(single and multi-family) 

Synthetic and Extended 

1121 office buildings 
 

Tohoku University 

(China houses) 

Synthetic and Extended 

635 houses 
  

Partner National/Regional level 
 Residential Office Other 

Tsinghua University 

(China) 
 

Extended 

4600 office buildings 
 

LBNL  (U.S.)  

Synthetic and Extended 

824000 offices 

(CBECS database) 

 

Polytechnic of Turin (Italy) 

Synthetic and Extended 

66000 houses 

(Piedmont regional 

database) 

  

 
The goal of the analysis of the provided contributions can be synthetically divided by: 
 

• description of subject (statistical characterization of the subject, benchmarking, etc.), 
• prediction (forecasting) of the energy consumption of the subject. 

 
Within the individual buildings contributions, a large part of the work is dedicated to the statistical 
characterization of the subject.  The subject description through statistics is delineated with different 
aims: Norway uses statistical analysis for the identification of driving variables that contributed to 
energy use, while the analysis from Austria and Germany is particularly related to the topic of 
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determining an accurate profile of user behavior (both in offices and in residential buildings) to 
represent the energy related behavior of the occupants. Even if the characterization of the occupant 
behavior assumed in the research takes different paths, it highlights the increasing importance of the 
topic.  
 
The theme of prevision (forecasting) of the energy consumption is carried forward by both the 
Japanese and French groups in individual buildings. In particular, the main goal of the French 
forecasting analysis is heating load as a function of the outdoor temperature.  In the Japanese analysis 
of 6 detached houses, the focus was concentrated on the prediction of the energy supply and demand 
in residential areas.  
 
Finally there is a third case, where the first statistical analysis used to characterize the subject is further 
used to calibrate the model and forecast the building energy performance. Italy focuses on the 
determination of the total heat loss coefficient and the influence of solar and internal heat gains 
through a statistical characterization of the building.  This is followed by calibration of the numerical 
model by comparing both expected energy need and the real measured consumption, and the expected 
and real aggregated parameters resulting from the first analysis. 
 
Characterization of the sample is the most common aim within the analysis of a large building stock. 
In particular, work groups (Italy, Japan, Spain, Canada) focused the investigations on the  
understanding of the influential factors which determine the energy consumption and establishing 
reliable building energy demand models. Benchmarks for electrical energy uses and for total primary 
energy consumption for the whole building stock is a goal present in some of the investigations like in 
the Italian case utilizing 4000 bank branches.  
 
Prediction is also dealt with in the large building stock, in particular with the aim of establishing 
building energy predictive models and goodness of fit to measurements assessment in the case of 
Italian bank branches and Canadian investigation on residential buildings.  
 
Due to the huge amount of data existing in a database at a national and regional level, the main goal of 
the investigations are to define building typologies to estimate energy demand of a building stock and 
to estimate the amount of energy used for different end uses. 
 

Table 5-2: Distribution by goal of the analysis of the obtained contributions 
Partner Description Prediction 

 Individual Building Large building stock Individual Building Large building stock 

TU Wien 

(Austria) 

Energy-related user 

behavior 

   

Concordia 

University 

(Canada) 

   To establish reliable 

building energy demand 

predictive models 

CETHIL, INSA 

de Lyon 

(France) 

  To estimate the HVAC 

energy consumption 

 

Karlsruhe Energy-related user    
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Institute of 

Technology 

(Germany) 

behavior 

Polytechnic of 

Turin (Italy) 

Identification of the 

influence of solar and 

internal heat gains 

Identification of 

energy consumption 

influential factors 

To estimate the building 

energy performance 

To establish reliable 

building energy demand 

predictive models 

Tohoku 

University 

(Japan) 

 Identification of 

energy consumption 

influential factors 

To predict the peak 

energy consumption 

 

Tohoku 

University 

(China houses) 

 Identification of 

energy consumption 

influential factors 

  

NTNU 

Trondheim  

(Norway) 

Identification of 

energy consumption 

influential factors 

   

CIMNE (Spain)  To analyze three 

parameters taken as 

building performance 

indicators 

  

National or regional level 

Tsinghua 

University 

(China) 

To study statistical distribution characteristics of 

office building energy use in China 

 

LBNL (U.S.) to estimate the amount of energy used for 

different end uses 

 

Polytechnic of 

Turin (Italy) 

to estimate energy demand of a building stock  

 
The topic concerning the structure of the database is absolutely not trivial and very often it is faced 
with little rigor even though it is a crucial issue. In this section, the contributions of the partners are 
analyzed according to the level of database they have collected. 
 
The database structure referred firstly to the detail of time disaggregation of the energy consumption 
and of the time dependent influencing factors: 
 

• Level 1 – Annual energy consumption, 
• Level 2 – Monthly energy consumption, 
• Level 3 – Daily/hourly energy consumption. 

 
The acceptable minimum level depends on the goal and on the subject of the analysis, but typically: 
 

• For analyses on large building stocks, level 1 was acceptable for the investigations, 
• For analyses on individual buildings, level 2 is considered as the minimum level. 
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When the study focuses on very large building stocks, useful analyses can be performed even if little 
information for each single building is available (annual energy consumption and some influencing 
parameters) but for a wide number of buildings; when the study focuses on individual buildings, the 
amount of required information increases, at least because the data about energy consumption (and the 
corresponding influencing factors) have to be collected at a monthly level. 
 
In particular, in cases where the main aim of the investigations is related to the building occupants, the 
database contains: 
 

• Building geometries and qualities, 
• Climate (indoor and outdoor) information, 
• Occupancies and lifestyles. 

 
Such database characteristics are summarized in Table 5-3 for the provided contributions. 
 

Table 5-3: Distribution by database level of the obtained contributions 
Partner Residential Office 

 Individual Building Large building stock Individual Building Large building stock 

TU Wien 

(Austria) 
Level 3  Level 3  

Concordia 

University 

(Canada) 

 Level 3   

CETHIL, INSA 

de Lyon 

(France) 

Level 3    

Karlsruhe 

Institute of 

Technology 

(Germany) 

Level 3    

Polytechnic of 

Turin (Italy) 
  Level 3 Level 1 

Tohoku 

University 

(Japan) 

Level 3 Level 1   

Tohoku 

University 

(China) 

 Level 1   

NTNU 

Trondheim  

(Norway) 

  3  

CIMNE (Spain)    1 

National or regional level 

Tsinghua 

University 
 Level 1 
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(China) 

LBNL (U.S.)  Level 1 

Polytechnic of 

Turin (Italy) 
Level 1  

 
The analysis methods adopted in the contributions depends on the goal and the subject of the 
investigations.  Generally, the description of the subject is dealt with using regression techniques. 
 
In the contributions on individual buildings, different types of regression analysis (linear, multivariate, 
logistic, partial least square) are used. Norway used partial least square regression to establish the 
variables with the greatest effect on energy use in buildings. The Austrian and German investigations 
applied multivariate and logistic regression types of analysis to identify a series of user profiles. The 
Italian investigation with linear regression and the French regression analysis based on a quartile – 
quartile plot are aimed at determining correlations between heating energy need and external 
temperature.  
 
Within a large building stock, the identification of possible influential factors on energy consumption 
is mainly dealt with using regression techniques. Quantification method 1 is also used to analyze 
qualitative factors by Japanese investigations of both residential and office buildings. 
 

Table 5-4: Analysis methods used in the contributions for description of the subject 

Partner Residential Office 

TU Wien 

(Austria) 
Regression analysis Regression analysis 

Karlsruhe 

Institute of 

technology 

(Germany) 

Multivariate linear and logistic regression analysis 

Model optimization through AIC and 

Nagelkerke’s R2 

Graphical analysis 

Polytechnic of 

Turin (Italy) 
 Linear regression 

Tohoku University 

(Japan) 
Quantification method 1 Multiple regression 

Tohoku University 

(China houses) 
Quantification method 1  

NTNU Trondheim  

(Norway) 
 Partial least squares regression 

CIMNE (Spain)  Linear regression 

National or regional level 

Tsinghua 

University 

(China) 

Frequency distribution 

Cluster analysis 
 

LBNL (U.S.)  Regressions techniques 

Polytechnic of 

Turin (Italy) 
Hierarchical clustering techniques  
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Prediction methods within the provided contributions are dealt with using multiple regression analysis 
and cluster analysis, tree structure, association rule mining and neural networks. Multiple regression 
analysis was chosen to identify a mathematical model able to forecast energy consumption in 
buildings with a set of already-known individual variables by using linear functions, while the method 
of neural networks (a basic data mining technique) is used to analyze the non-linear relationship 
between energy consumption and individual variables. Decision tree structure is a data mining 
technique using both numerical and categorical variables with interpretable flow-chart tree structures 
that enables users to quickly extract useful information. 
 

Table 5-5: Analysis methods used in the contributions for prediction 
Partner Residential Office Other 

CETHIL, INSA 

de Lyon 

(France) 

  
Regression based on quartile -

quartile plot 

Concordia 

University 

(Canada) 

Tree method technique 

Cluster analysis 

Association rules 

  

Polytechnic of 

Turin (Italy) 
 

Multiple linear regression 

t-test 

F-test 

Chi-squared test 

VIF 

Neural network 

 

Tohoku 

University 

(Japan) 

Multiple regression analysis 

Neural network 
  

 
According to the goal of Annex 53 “Total energy use in buildings: analysis and evaluation methods”, 
the contributions that took into account the total energy use in buildings are highlighted in the 
following table. 
 

Table 5-6: Contributions taking into account the total energy use in buildings 
Partner Total Heating Cooling DHW Electricity  Lighting  Other 
Concordia 

University 

(Canada) 

X       

CETHIL, INSA de 

Lyon (France) 
 X X     

Polytechnic of 

Turin (Italy) 
 X X  X   

Tohoku 

University 

(Japan) 

       

a)* X X X X    
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b)**     X   

c)*** X       

d)**** X X X X X X  

Tohoku 

University (China 

houses) 

X X      

NTNU Trondheim  

(Norway) 
 X   X   

Polytechnic of 

Turin (Italy) - 

regional 

       

LBNL (U.S.)  - 

national 
X X X X X X 

X (oil fuel, 

Natural 

gas) 

a)* houses in Sendai   b)** peak electricity in 6 detached houses  c)*** office buildings  d)**** 80 
households 
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5.2 Individual buildings 

Focusing on single buildings, statistical methods can be used for different purposes dealing with the 
total energy use. In the following figure (Figure 5-1) the different stages are presented till a prediction 
model for the total energy use is well defined and validated. For the description of the influencing 
factors, the analyses of the relevant influencing factors, the parameter identification for the prediction 
model and the estimation of the accuracy of the prediction statistical methods can be used. 
 

 
Figure 5-1: Stages of development a model for prediction the total energy use in buildings 

 
STAGE 1: DESCRIPTION 
 
For description of the climate, the building, the operation and maintenance and the occupants typically 
descriptive statistics (Average Values, Standard deviations, Distributions) are used. 
Some example parameters for each category are listed below. 
 

• CLIMATE: Distribution of Hourly Mean Outdoor Temperature in January, 
• BUILDING: Distribution of  Thermal conductivity of an insulation material, 
• BUILDING: Average living space area per person, 
• OPERATION: Average value and standard deviation of indoor temperature in sleeping rooms, 
• MAINTENANCE: Distribution of lifetime of a lighting bulb, 
• MAINTENANCE: Average lifetime of a glazing system, 
• OCCUPANTS: Average value and standard deviation for occupation during a weekday, 
• OCCUPANTS: Average opening time of windows. 
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Also, the energy use can be investigated with descriptive statistics. In Experience 1, Yoshino et al. 
analyzed the energy consumption in 6 detached houses out of a field survey of 80 houses. The next 
figure presents the frequency distributions of peak load electricity for different time spans as a 
histogram and as a cumulative distribution. 
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Figure 5-2: Frequency distribution of peak value of a year (TOHOKU 07) [Experience 1]. 

 
A very interesting application of statistical methods is to find correlations between energy 
consumption and parameters describing the objects. In the next figure from Experience 7, an example 
from Austria is presented where the consumption of hot and cold water and electricity for household 
equipment is correlated with the number of persons in the household. 
 

 
Figure 5-3: Analyses of measured consumption of cold water/hot water and electricity for household 

equipment in a multifamily building in Vienna (Year of Measurement and Questionnaire: 2011, 
Number of Household 44) [Experience 7] 

 
STAGE2: SELECTION OF RELEVANT FACTORS 
 
In stage 2 of the development of prediction models for single buildings statistical methods are used to 
identify the important parameters. In Experience 2, the data of a Building Energy Management System 
from a real office building is analyzed with a multivariable regression method looking for the 
important parameters that govern the heating energy use, the electricity consumption and the fan 
energy use. In that experience a partial least squares regression (PLSR) and principal components 
regression (PCR) are used to model a response variable when there are a large number of predictor 
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variables, and those predictors are highly correlated or even collinear. Both methods construct new 
predictor variables, known as principal components (PCs), as linear combinations of the original 
predictor variables. In the following figure the importance of an original variable is presented for the 
four most important PCs by showing the PLS weights. 
 

 
Figure 5-4: PLS weights for heating use of the four most important principal components [Experience 

2] 
 
By using procedures for model scaling and finding driving variables based on PLS weights, it was 
found that the most important variables for the heating energy use are outdoor temperature, control 
parameters and temperatures in the substation, and some of ventilation parameters. These ventilation 
parameters were related to the AHUs that were mostly in use. 
 
More focused on occupant behavior modeling, in Experience 3 a regression analysis was chosen in 
order to analyze the influence of physical and individual factors on the frequency of AC-unit usage for 
cooling and heating as well as the chosen set-point temperature. The importance of one factor 
compared to the others has been calculated as the product of the absolute value of the coefficient (the 
respective value of ß) and the range of the variable. This product was called the “importance value”. 
In Experience 4 the main focus was to identify energy-related user behavior patterns for window 
control and the usage of sun protection devices in relation to outdoor in indoor climate. Logistic 
regression has been applied as the methodological approach to explore patterns of user behavior. The 
method allows predicting the outcome of a binary dependent variable by modeling the probability of 
an event such as window-opening (‘yes’ or ‘no’).  
 
STAGE 3 – SELECTION OF MODELING TYPE FOR ENERGY USE PREDICTION 
 
In Experience 5 several classical methods to predict the energy consumption of a real office building 
in Rome, Italy are compared to the modeling method using Artificial Neural Networks Ensembling 
(ANNE). The results show that the proposed ANNE approach provides a remarkable improvement 
with respect to the best classical method (using the average load profiles). 
 
STAGE 4&5: IDENTIFICATION OF PARAMETERS AND ANALYZING THE PREDICTION 
ACCURACY 
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In Experience 8 based on a probabilistic occupant model the heating energy demand of a single family 
building with three different types of building envelopes has been calculated with a detailed building 
simulation. From this database of 1000 “virtual families”, in three types of buildings the most 
important occupant related parameters (average indoor temperature, average internal loads and 
average outdoor air exchange) have been identified by minimization of the difference between the 
average of the ensemble and the simplified calculation with the average values. The parameters have 
been identified using 2 of the three types of buildings and the accuracy has been analyzed using the 
third type of building. 
 
 

 
Figure 5-5: Frequency distribution of heating energy use calculated with a full building simulation 

and an probabilistic occupant model (left)  with three different building envelopes(E=Existing 
building from 1970, L=Low energy house, LE=Lowest energy house).  Analyzing the accuracy of the 
simplified model using the parameters identified with the buildings E and LE. The comparison of the 

case with Low energy house shows the accuracy of the model. [Experience 8] 
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5.3 Large Building Stock 

Statistical analysis of a large stock of buildings represent methods used to estimate the energy 
consumption and/or the peak demand of a building at a level of detail that is suited to apply to a 
number of buildings that is statistically significant (usually more than tens of buildings). The principle 
of the approach is to project the experimental data on a basis.  The methods depend on the type of 
basis which is typically defined by its dimension and its components. 
 
One type of projection is on categories (Experiences 1, 2, 3, 4, 5, 6). For example, Hu and Yoshino 
(Experience 4) consider the climate zones, the area of the building, the type of the heating system and 
its operation, as well as the number of people in the household and their annual income. In another 
study, Yoshino (Experience 5) considers, besides the categories mentioned before, the weather, 
indicated by the cooling and heating degree days and the indoor temperature during the heating and 
the cooling season. The resulting models are regression models using different variants:  multi 
regression, neural networks, and quantification methods (Experiences 1, 2, 5).  
 
Categorizing reduces the variance of the predicted results. The physical explanation of the result is 
embedded in the categories. Usually, these approaches do not differentiate between the inputs (e.g. 
weather), the parameters (e.g. floor area, total heat loss coefficient) and the outputs (e.g. indoor air 
temperature) of a physical (or direct) model. The results indicate the influence of each category given 
by the weighting coefficient in the model. 
 
This kind of approach, which uses less data (in fact the data available), is very effective in practice. It 
allows the prediction of energy consumption with an expected variance for real buildings by using 
data which are available mainly on monthly and/or annual bills. 
 
Comparison between categories needs a criterion which “normalizes” the consumption in order to 
negate the effect of parameters specific to a given building. For example, Corgnati et al.  (Experience 
6) propose and demonstrate the application of an indicator that normalizes the data as a function of the 
heated volume and the climate, described by the degree days of the site.  
 
The second class of projection is on parameters of physical models. The main idea in this approach is 
to consider a physical model based on the heat balance and to identify the parameters of this model 
which increase the fit between the predicted results and the measurements. One of the most common 
approaches is to use the load curve, which expresses the dependence of the heating (or cooling) 
consumption on the outdoor temperature. This “thermal signature” of the building can be used 
together with the distribution of degree-days or degree-hours in order to estimate the energy 
consumption (e.g. the bin method). Basically, the building signature is obtained by regression. Robust 
regression may be used to improve the prediction in case of perturbation such as the usage of the 
building (Experience 7).  The advantage of this approach is that the thermal behavior of the building, 
the comfort and the climate are decoupled. A variant of this method is to use the free-running 
temperature, which allows the estimation of the energy savings for cooling by using free-cooling by 
ventilation (Experience 8). 
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Refinements of the thermal signature or the load curve method are proposed (Experiences 8, 9). 
Ghiaus (Experience 8) demonstrated the equivalence between the load curve and the free running 
temperature. By using the free-running temperature, the whole range of building operation (heating, 
ventilation and cooling) is described by a single concept. 
 
Normally, thermal signature is a static method. However, the heat balance may be written taking in 
account the accumulation. By doing so, Danov et al. (Experience 7) obtained a dynamic model which 
can estimate the influence of the thermal mass of the building on the energy consumption. Solar gains 
may be also included in the thermal signature, reducing the variance of the energy estimation 
(Experience 7).  
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5.4 National/Regional analyses 

Statistical analysis of national building energy consumption is aimed at defining a general overview of 
the energy end use due to the construction sector, at a national level. Actually, the knowledge of 
national building energy use has remained under investigation, due to a lack of information regarding 
the overall characteristics. With the aim of building strong national databases, national agencies and 
institutions (CBECS in the U.S., MOHURD in China, TABULA in Europe) have gathered real energy 



71 
 
 

use data and physical characteristics on the national building stock. Specifically, China has collected 
data of government office buildings and large-scaled commercial buildings [Experience 1], the U.S. 
has built a national sample database of commercial buildings [Experience 2], whereas the European 
countries have collected data characterizing the national residential building stock [Experience 4].  
 
The subject of the task is to collect and subsequently to elaborate data characterizing national building 
stocks in order to offer a realistic interpretation of typical building energy consumption. Different 
approaches have been tested and used for statistical analysis of the databases.  
 
Wei, Xiao and Jiang [Experience 1] adopted two statistical research methods: boxplot and a key 
statistical parameter of energy use data and frequency distribution analysis. Both these two approaches 
have been presented as effective and suitable for future analysis and international comparison. 
Database characteristics have been gathered based on regional government website releases and 
included Gross Floor Area (GFA) as well as annual electricity consumption (excluding district 
heating) of 4600 office buildings. Cluster analysis showed that the average national stock electric 
consumption is 107 kWhe/m2a for private office buildings and 67.6 kWhe/m2a for government office 
buildings. 
 
Hong and Wang [Experience 2] analyzed utility bills (monthly energy use for electricity and natural 
gas) of the CBECS U.S. sample survey and broke them down into energy end use for the national 
commercial building stock. Statistical regressions and engineering modeling approaches were used to 
estimate national end use based on consumption data. Average energy consumption for the 
commercial buildings in the U.S. - taken from monthly regression models of 1518 gathered buildings - 
is 292.6 kWh/m2, where the single largest part (35.3%) is due to space heating. 
 
The European project TABULA (Typology Approach for Building Stock Energy Assessment) [51] 
presented by Talà et al. [Experience 4] aimed to create a homogeneous database for European 
residential building typologies. The research tested three statistical methods with the final goal of 
estimating the energy consumption of residential building stocks to subsequently predict the impact of 
potential energy efficiency measures of benchmark models at the national level (based on a singular 
evaluation for each European country participating the project). These methodologies shoot for the 
enhancement of the potential impact of energy saving measures and carbon dioxide reduction, by 
means of the selection of the most adequate energy retrofitting strategies and interventions in existing 
buildings [Experiences 3,4]. Model calculations aimed at estimating the energy saving potential of 
national residential building stocks using the Energy Balance Method were developed by four 
countries (Denmark, Germany, Italy and Czech Republic) representative of the main European 
climatic regions.  This was accomplished using the national EPBD asset rating method [Experience 3]. 
Moreover, the same modeling method (EBM) can possibly be extended to the energy performance 
assessment of the whole national building stock. 
 
For each country, two levels of building retrofit were considered: (a) standard refurbishment, applying 
standard national measures and (b) advanced refurbishment, applying the best national technologies 
available [Experience 3]. Specifically, the Italian database contained records for more than 66.000 
houses rated across the Piedmont region and also gathered information on physical characteristics and 
calculated energy requirements of single houses. On the basis of three independent variables 
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elaborated by means of statistical analysis (location, age, form of the building), a total of 84 building 
types (archetypes) representative of the Italian residential building stock were generated [Experience 
4].  
 
All these kind of approaches, which use statistical analysis of national building stock samples, are very 
effective. As a matter of fact, average predictions of energy consumption at the national level are 
available. Public existing building energy use has existed for a long time at a micro-perspective 
[Experience 2] due to a lack of shared definitions and outdated information [Experience 3]. 
Nonetheless the development and the statistical analysis of strong national energy-use datasets, could 
be one element towards a more robust estimation of the overall energy consumption of the national 
building stocks. 
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6. General conclusion and perspective 

In this report, the assessment of potential application of statistical analysis for the prediction total 
energy use in buildings and for the identification of the related most significant influencing factors is 
dealt with. This has been covered first by an extended literature review, followed by the collection and 
critical analysis of experiences carried out by ST-C working group. 
First, it emerged one of the key passage when statistical based tools are used for the analysis is to 
clearly define to subject of the study. As mentioned, the possible applications of statistical analysis 
may be divided into two big fields: to analyze individual buildings, or to focus the analysis on large 
building stock up to national or regional analysis. 
The collection of the Annex 53 partners’ experiences, showed different types of information, very 
detailed up to the breakdown of each single final energy use. On the contrary, in the case of regional 
or national analysis, few information about each building of the sample are needed to provide some 
basic but interesting statistical analysis. Starting from these considerations, it arises that to select a 
suitable methodology, the “scale” of the analysis is essential. To this aim, three main descriptors have 
to be considered: number of buildings to be analyzed (from an individual to very large building stocks), 
number of items describing each buildings and time frequency of the collected time dependent 
parameters (annual to sub-hourly time frequency). 
The possible application of statistical analysis depends on the aim of the analysis itself. Statistics could 
be used to describe the object of the study (descriptive statistics) to provide a clear description of the 
actual energy consumption; then to find out which are the dominant influencing factors, to put in 
relation the dependent variable (energy use) and independent variables (the influencing factors). When 
the most important influencing factors are known, statistical analysis could be used to build up a 
prediction model. Statistics can also be applied for creating reference buildings representative of a 
building stock, that can be implemented in direct building energy simulation tools.  
Another possible application of statistics is to define “modules” meaning to provide statistical inputs 
for a direct building energy simulation tool. For example, dealing with occupant behavior, the action 
on adjusting the thermostat, it’s something that is not deterministic, but it’s related to the probability of 
doing a certain action when some environmental parameters are present. So the input data 
(probability) for direct simulation tool could be defined through a statistical approach. 
According to this general scheme, the application of statistical analysis can be structured in three 
levels of investigations. 
The first level is a basic level: since an amount of data is available first of all tendencies related to the 
dataset should be clarified. The use of statistical parameters (mean value, standard deviation, ...), of 
frequency distributions of the collected data, etc. can provide significant information to define a clear 
picture of the subject of the study. It’s the use of statistics to describe.  
The second level is to use statistics to find out the dominant influencing factors on energy uses. If the 
most dominant influencing factors can be identified reduced to a limited number of parameters, it’s 
possible to find out the relationship between these parameters and the final energy use and then a very 
quick and robust prediction model could be built to provide information about the energy behavior of 
the building (level three).  
The adopted analysis methods in the contributions depend on the goal and the subject of investigations.  
In the contributions on individual buildings, different types of regression analysis (linear, multivariate, 
logistic, partial least square) are used.  Generally, the description of the subject is dealt with regression 
techniques. Within large building stock arrived experiences, the identification of possible influential 
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factors on energy consumption is mainly dealt with regression techniques. Quantification method is 
also used to analyze qualitative factors. 
Prediction methods (within the arrived contributions) are dealt with both multiple regression analysis 
and cluster analysis, tree structure, association rule mining and neural network. 
Multiple regression analysis was chosen to identify a mathematical model able to forecast energy 
consumption in buildings with a set of already-known individual variables by using linear functions, 
while the method of neural network (a basic data mining technique) is used to analyze the non-linear 
relationship between energy consumption and individual variables. Decision tree structure is a data 
mining techniques using both numerical and categorical variables with interpretable flow-chart tree 
structures that enables users to quickly extract useful information. 
As well known, a significant problem to face is the difference between the predicted building energy 
demand and its actual energy consumption. A big impact on this difference is due to the lack of 
knowledge about the real functioning of the building during its day by day life. A fundamental aspect 
for a better description of the building real functioning is to investigate, to highlight and to express 
those factors related to the actual functioning. Annex 53 “Total Energy Use in Buildings -Analysis and 
evaluation methods” had as its  ultimate outcome a better understanding and a strengthening of the 
knowledge for robust prediction of total energy usage in buildings, hence enabling the assessment of 
energy-saving measures, policies and techniques. On this base, Annex 53 focused on the influence of 
occupant behavior on building energy consumption, with the purpose to bring the occupants behaviors 
into the building energy field so as to conduct the building energy works (research, practice, policy, 
etc) more closed with the real world.  
Annex 53 clearly defined the approach to describe occupant behavior quantitatively in the field of 
building energy performance, by setting up probabilistic models for predicting occupant behavior in 
dwellings and office buildings. A further perspective of the statistical analysis is represented by new 
methodologies (modeling approaches) and techniques (monitoring hardware and software platforms) 
for analyzing real building total energy use and for investigating the factors influencing occupant 
behavior in buildings, are therefore available for further investigations and for specific applications as 
in energy auditing and smart metering of HVAC systems. Combinations of deterministic and 
probabilistic behavioral models can define all the possible interactions between users and building 
controls (such as occupancy presence, heating and cooling set point adjustments, use of lighting and 
equipment) and they can be implemented simultaneously in building models in energy simulation 
tools, in order to obtain a complete evaluation of users’ influence in modifying the building energy 
performance. Such models should also help in identifying wastes in environmental control, as, for 
example, excessive air renovation, too accurate humidity control, etc. 
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1. Statistical analysis of individual buildings 

1.1 Introduction 

Focusing on single buildings statistical methods can be used for different purposes dealing with the 
total energy use. In the following figure the different stages are presented till a prediction model for 
the total energy use is well defined and validated. For the description of the influencing factors, the 
analyses of the relevant influencing factors, the parameter identification for the prediction model and 
the estimation of the accuracy of the prediction statistical methods can be used. 
 

 
Figure 2-1: “Stages of development a model for prediction the total energy use in buildings” 

 
STAGE1: DESCRIPTION 
For description of the climate, the building, the operation and maintenance and the occupants typically 
descriptive statistics (Average Values, Standard deviations, Distributions) is used. 
Examples are: 
CLIMATE: Distribution of Hourly Mean Outdoor Temperature in January 
BUILDING: Distribution of Thermal conductivity of an insulation material 
BUILDING: Average living space area per person 
OPERATION: Average value and standard deviation of indoor temperature in sleeping rooms 
MAINTENANCE: Distribution of lifetime of a lighting bulb  
MAINTENANCE: Average lifetime of a glazing system 
OCCUPANTS: Average value and standard deviation for occupation during a weekday 
OCCUPANTS: Average opening time of windows 
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Also the energy use can be investigated with descriptive statistics. In Experience1Yoshino et. al. 
analyzed the energy consumption in 6 detached houses out of a field survey in 80 houses. The next 
figure presents the frequency distributions of peak load electricity for different time spans as a 
histogram and as a cumulative distribution 
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Figure 2-2: “Frequency distribution of peak value of a year (TOHOKU 07) [Experience 1].” 

 
A very interesting application of statistical methods is to find correlations between energy 
consumption and parameters describing the objects. In the next figure from Experience 7 an example 
from Austria is presented, where the consumption of hot and cold water and electricity for household 
equipment is correlated with the number of persons in the household. 

  
Figure 2-3: “Analyses of measured consumption of cold water/hot water and electricity for household 

equipment in a Multifamily building in Vienna (Year of Measurement and Questionnaire: 2011, 
Number of Household 44) [Experience 7]” 

 
STAGE2: SELECTION OF RELEVANT FACTORS 
In stage 2 of the development of prediction models for single buildings statistical methods are used to 
identify the important parameters. In Experience 2 the data of a Building Energy Management 
Systems of a real office building is analyzed with a multivariable regression method looking for the 
important parameters that govern the heating energy use, the electricity consumption and the fan 
energy use. In that experience a partial least squares regression (PLSR) and principal components 
regression (PCR) are used to model a response variable when there are a large number of predictor 
variables, and those predictors are highly correlated or even collinear. Both methods construct new 
predictor variables, known as principal components (PCs), as linear combinations of the original 
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predictor variables. In the following figure the importance of an original variable is presented for the 
four most important PCs by showing the PLS weights. 

 
Figure 2-4: “PLS weights for heating use of the four most important principal components 

[Experience 2]” 
 
By using procedures based on PLS weights for model scaling and finding driving variables, it was 
found that the most important variables of the heating energy use are outdoor temperature, control 
parameters and temperatures in the substation, and some of ventilation parameters. These ventilation 
parameters were related to the AHUs that were mostly in use. 
More focused on Occupant behavior modelling in experience 3 a regression analyses was chosen in 
order to analyze the influence of physical and individual factors on the frequency of AC-unit usage for 
cooling and heating as well as the chosen set-point temperature. The importance of one factor 
compared to the others has been calculated as the product of the absolute value of the coefficient (the 
respective value of ß) and the range of the variable. This product was called the “importance value”. 
In experience 4 the main focus was to identify energy-related user behavior patterns for window 
control and the usage of sun protection devices in relation to outdoor in indoor climate. As a 
methodological approach to explore patterns of user behavior logistic regression has been applied. The 
method allows predicting the outcome of a binary dependent variable by modeling the probability of 
an event such as window-opening (‘yes’ or ‘no’).  
 
STAGE 3 – SELECTION OF MODELING TYPE FOR ENERGY USE PREDICTION 
In Experience 5 several classical methods to predict the energy consumption of a real office building 
in Rome, Italy are compared to the modeling method using Artificial Neural Networks Ensembling 
(ANNE). The results show that the proposed ANNE approach can get a remarkable improvement with 
respect to the best classical method (using the average load profiles). 
 
STAGE 4&5: IDENTIFICATION OF PARAMETERS AND ANALYZING THE PREDICTION 
ACCURACY 
In Experience 8 based on a probabilistic occupant model the heating energy demand of  single family 
buildings with three different types of building envelopes have been calculated with a detailed 
building simulation. From this database of 1000 “virtual families”  in three types of buildings the most 
important occupant related parameters (Average indoor temperature, average internal loads and 
average outdoor air exchange) have been identified by minimization the difference between the 
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average of the ensemble and the simplified calculation with the average values. The parameters have 
been identified using 2 of the three types of buildings and the accuracy has been analyzed using the 
third type of building. 
 

 
Figure 2-5: “Frequency distribution of heating energy use calculated with a full building simulation 

and an probabilistic occupant model (left)  with three different building envelopes(E=Existing 
building from 1970, L=Low energy house, LE=Lowest energy house).  Analyzing the accuracy of the 
simplified model using the parameters identified with the buildings E and LE. The comparison of the 

case with Low energy house shows the accuracy of the model. [Experience8]” 
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1.2 Experience 1: Survey of the peak electricity in residential buildings (analysis based on 
survey of energy consumption for 80 houses in Japan) 

(Hiroshi Yoshino, Ayako Miura) 
 
1.2.1 Introduction 

The annual peak electricity consumption in Japan has been increasing due to the changes in the 

energy demand structure. Although a peak demand is known to occur on the hottest day of the year, 
the biggest consumption has a tendency of reaching higher prominence value. As the annual electricity 
supply is determined on the basis of last year’s annual peak electricity demand, the boost of peak 
electricity is a huge problem. Consequently, the smoothing down the peak electricity load is a 
principal goal from the viewpoint of maintaining a stable electricity supply, lowering costs and 
conserving environment. Despite the fact that peak smoothing has occurred in the residential sector 
(e.g. use of night time power for thermal storage devices), the biggest demand of the day in residential 
sector occurs from 8:00pm to 10:00pm. It is important to grasp the peak energy consumption in order 
to predict the energy supply and demand in the residential sector. In this paper, frequency distribution, 
day-load-rate and outbreak time of peak electricity analysis was carried out on 6 detached houses 
based on field measurements of the energy consumption for 80 houses in Japan. This report was 
authored corresponding to Ref [1]. 
 
1.2.2 Database characteristic 

• Number of Buildings: 6 detached houses (distributed in six different districts) 
• House type: Multi-family (minimum of 2 residents to maximum of 6)   
• Analysed period: January 2003 to December 2003 (Actual field measurement was carried out 

from  November 2002 to March 2005) 
• Contents: Energy data, temperature and humidity data, building structure and kinds of 

appliances 
• Interval:  
� Electricity: every minute,  
� Kerosene: every five minutes,  
� Gas: every 15 minutes, 
� Temperature and Relative humidity: every 15 minutes basis 

• Online database: Energy, temperature and humidity data (available in database: Energy 
Consumption in 80 Residential Buildings in Japan) 

 
1.2.3 Method 

In order to clarify the relationship between peak electricity demand and residential appliances, and the 
regional characteristics of peak electricity demand, some analyses were conducted on factors which 
may affect the residential peak energy demand: 1) Time of peak electricity occurrence, 2) Relationship 
between appliance use and peak energy consumption and 3) Regional characteristics. As for the time 
variation of the peak value, integrated value of 15 minutes basis has been converted into hourly 
consumption amounts (15 minutes X4), and the average hourly electricity consumption value is 
indicated. The biggest electricity consumption of the integrated value per minute is given as the peak 
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value of the day. Furthermore, peak electricity consumption occurrence time, frequency distribution 
and the ratio of daily load factor were investigated.. 
 
1.2.4 Results and discussion 

Outline of the investigated houses 
Table 2-1 shows basic information of the investigated houses. These 6 detached houses were extracted 
from an analysis of field measurements on energy consumption for 80 houses in Japan. Three houses 
are all-electric houses and other 3 houses use combined energy sources were selected, since they have 
enough information and measurement data for the analysis. 
 

Table 2-1: Basic information of investigated houses 

Heating Cooling
H/W

supply
Cooking Heating Cooling

Hokkaido
01

Sapporo 1999 147.4 Wood 1.40 0.50 Electricity Electricity Electricity Electricity 6

Panel
heater

with Hot

water

-

Tohoku

 07
Morioka 2000 140.0 Wood 1.01 0.70 Electricity Electricity Electricity Electricity 4

Thermal

strage
heater

A/C

Kyushu

 06
Maebara 2001 145.7 Wood 2.5 3.00 Electricity Electricity Electricity Electricity 4

A/C,

oil heater
A/C

Hokkaido
07

Sapporo 1999 240.0 RC+Wood 1.44 0,79 Kerosene Electricity Kerosene Electricity 4
Fan

heater
-

Hokuriku
03

Niigata 2002 117.0 Wood 2.18 0.95 Electricity Electricity Gas Gas 4
A/C,

Elctric

carpet

A/C

Kyuushuu
04

Fukuoka 2001 158.9 Wood 2.3 4.00 Electricity Electricity Gas Gas 2 A/C A/C

Category
Name of
detached

house
Location Built year

Gross

floor
area
[㎡]

Structure
Q-value
[W/㎡・K]

Leakage

area
[c㎡/
㎡]

Energy sourse by each use Numb
er of
family

Air-conditioning
Equipments

All-electric
house

Combined

energy
 sourse
housing

 
 
Investigation of peak electricity consumption variation and the occurrence time in winter  
a) All-electric house 
Figure 2-6 shows the time variation of electricity consumption and time of the peak occurs in 
Hokkaido 01, which is located in one of the coldest part of Japan. Space heating is used all day other 
than 4:00pm to 6:00pm. Energy consumption is relatively high from 11:30pm to 5:00pm, when a hot 
water supplier is put into action. Start-up electricity of the hot water supplier causes the peak value to 
frequently occur between 11:00 pm to 1:00am. Another peak shown around 7:00am is caused by 
reheating the hot water. Each peak value in Hokkaido 01 stays constant around 12kW.  
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Figure 2-6: “Time variation of electricity 

consumption and distribution of occurrence time of 
peak electricity consumption (Hokkaido 01)” 

Figure 2-7: “Time variation of electricity 
consumption and distribution of occurrence time of 

peak electricity consumption (Tohoku 07)” 
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Figure 2-8: “Time variation of electricity 
consumption and distribution of occurrence time of 
peak electricity consumption except for night time 

electricity (Tohoku 07)” 

Figure 2-9: “Electricity consumption of each 
appliance and the percentage (Tohoku 07)” 
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Figure 2-10: “Time variation of electricity consumption and distribution of occurrence time of peak 

electricity consumption except for night time electricity (Kyushu 06)” 
 
The energy consumption characteristics of other all-electric-house, Tohoku 07 are indicated in Figure 
2-7. Tohoku 07 uses a thermal storage electric heater that uses night time electricity. From 1:30am to 
4:00am, about 20kW of peak electricity occurs due to the simultaneous operations of the hot water 
supplier and thermal storage heater. Almost all of the peak electricity consumption amounts are caused 
by the use of the thermal storage heater. In order to understand the peak energy consumption 
excluding  night time electricity, another analysis was carried out on Tohoku 07.The result is shown in 
Figure 2-8. Peak values decline when cooking devices are used both in daytime and night time. Peak 
values are highest around 7:00 pm and the value is 4kW.  Figure 2-9 indicates the peak electricity 
consumption of each appliance used and the percentage used by each appliance. Electric stove and 
lighting consume more energy than other appliances, as the monthly average ratio indicates: 56.7% for 
stove, 31.7% for lighting and others and then 4.7% for TV. 
The electricity consumption of Kyushu 09, which is located in the warmest region of the three all-
electric houses is shown in Figure 2-10. An air conditioner and oil heater are used as heating resources. 
The occurrence time of peak electricity is distributed widely compared to other all- electric houses. 
The peak value found at night occurs when the space heating and hot water supplier are operated at the 
same time. Other peak values are presented when residents use cooking devices, with the peak values 
distributed around 6 to 10kW.  
In those three all-electric houses, thermal storage devices such as hot water suppliers have a large 
influence on the peak electricity consumption. One distinguishing aspect of energy consumption in all-
electric-houses are that equalization of peak electricity occurs due to the concentration of the peak in 
night time, while general households consume the largest amount of energy around 8:00pm to 
10:00pm, when family members tend to spend time together. However, the investigation with the 
exception of night time consumption shows that the peak occurred around 7:00pm because of electric 
cooking devices.  
 
b) Combined energy source houses 
The electricity consumption of a detached house, Hokkaido 07, is shown in Figure 2-11. This house 
uses kerosene for space heating and the hot water supply. Electricity is used for all other purposes. The 
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main appliance for heating is a kerosene fan heater and an electric fan heater is operated when 
required. In Hokuriku 03, there are three peaks occurring in the morning, daytime and night as shown 
in Figure 2-12, but the largest peak occurs around 7:00am. Regarding the effect of microwave and TV 
usage on producing the peak value, is shown in Figure 2-13. Several appliances have almost the same 
ratio contrary to Tohoku 07 (all-electric house) of which peak by the electricity was accounted for 
electricity cooking devices. Figure 2-14 shows the data for Kyushu 04. Gas is used for the hot water 
supply and cooking, while electricity is used for air conditioning. The peak values have a wide 
distribution widely and occur frequently around 10:00pm. In addition, there is another peak 
occurrence around 7:00 when residents operate an air conditioner. In houses which have a variety of 
energy sources, the occurrence time of peak electricity consumption varies widely in one day, when 
cooking devices and other appliances are operated simultaneously. 
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Figure 2-11: “Time variation of electricity 

consumption and distribution of occurrence time of 
peak electricity consumption except for night time 

electricity (Hokkaido 07)” 

Figure 2-12: “Time variation of electricity 
consumption and distribution of occurrence time of 
peak electricity consumption except for night time 

electricity (Hokuriku 03)” 
 
Investigation on long-term fluctuation of peak electricity  
a) All-electric houses 
Figure 2-13 shows the integrated electricity consumption in a day and the long term fluctuation in 
Hokkaido 01. Since the house uses space heating all the day, energy consumption in winter is   high 
(10~12kW).  As the season changes into summer, the peak value of energy consumption gradually 
goes down. The same data for Tohoku 07 is shown in Figure 2-14. The peak electricity consumption 
in winter is remarkably high (peak of 20kW). From May to October, when energy consumption for 
heating does not occur, peak electricity is around 7kW which is the same as other houses. In Figure 2-
15 (Kyushu 06), the energy consumption for heating varies drastically in one day. Despite of cooling 
energy consumption in summer, there was no effect on the peak value. 
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Figure 2-13: “Integrated electricity consumption in a 

day and long term fluctuation (Hokkaido 01) “ 
Figure 2-14: “Integrated electricity consumption  
in a day and long term fluctuation (Tohoku 07)” 
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Figure 2-15: “Integrated electricity consumption in a 

day and long term fluctuation (Kyushu 06)” 
Figure 2-16: “Integrated electricity consumption in 
a day  and long term fluctuation (Hokkaido 07) “ 

 
In all-electric houses, the peak energy consumption is very sensitive to the season. The use of 
electricity for heat may have a large effect on it. Especially in houses in colder parts of Japan, such as 
Hokkaido and Tohoku, where seasonal effects clearly lead to high heating energy consumption.  
 
b) Combined energy source houses 
Figure 2-16 indicates the integrated electricity consumption in a day and the long term fluctuation in 
Hokkaido 07. Daily peak electricity consumption fluctuates within one day, and there was no 
difference between each season. Figure 2-17 shows the data for Hokuriku 03. The winter energy 
consumption is relatively high, because this can be attributable to using air conditioners and 
electrically heated carpet for space heating. Japanese people often use electrically heated carpet as 
partial heating, and occupants sit on it directly. Despite peak electricity increasing in winter, daily 
variation is larger than that of the seasonal difference. The data for Kyushu 04 is shown in Figure 2-18. 
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Space heating is operated from December to April, while space cooling is operated from August to 
September. The peak value is around 3~4kW as space conditioning devices are used. In combined 
energy source houses, the variation of peak electricity consumption varies in a day is more significant 
than the seasonal variation. 
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Figure 2-17: “Integrated electricity consumption 
in a day and long term fluctuation (Hokuriku 

03)” 

Figure 2-18: “Integrated electricity consumption 
in a day and long term fluctuation (Kyushu 04)” 

 
Frequency distribution of peak electricity consumption of a year 
Frequency distribution of the effect of varying the time interval on peak electricity consumption in a 
year was analyzed. 
 
a) All-electric houses 
Figure 2-19 indicates the frequency distribution of peak electricity in Tohoku 07. As the time period 
gets longer, the average value decreases and the distribution are gets narrower. In addition, there is a 
large difference between the most frequent value and the average. This is simply because the peak 
electricity consumption varies depending on the season. 
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Figure 2-19:  “Frequency distribution of peak value of a year (Tohoku 07)” 

 
b) Combined energy source houses 
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Figure 2-20 indicates the result of Kyushu 04  which uses electricity, gas and kerosene. Likewise, for 
the all-electric houses, the distribution range gets narrower as the time period increases. 
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Figure 2-20: “Frequency distribution of peak value of a year (Kyushu 04) “ 

 
Long- term variation of daily load factor ratio 
Daily load factor ratio means the ratio of the average electricity consumption per day and the 
maximum electric power. The formula for this computation is indicated as: 
 

 
 
No matter how small the peak electricity value occurs, the supply side is required to cover the 
demanded electricity and provide a power generation scale to balance the request. As the peak value 
increase in the residential sector, the more the real demand will differ from the supply. 
 
a) All-electric houses 
Figure 2-21 indicates the variation of day load factor ratio in all-electric houses. Day load factor varies 
depends on the season and it decreases 10% to 20% as the season changes from winter to summer. 
Especially in Hokkaido 01 and Kyushu 06, the difference among each season is the biggest. The 
largest differences between two seasons were 36.5% and 41.1%, respectively. The lowest ratio of daily 
load factor of 8.9% occurred on September 9th in Hokkaido 01 and 8.7% on August 6th in Kyushu 06. 
In Tohoku 07, the value was below 23%, which is relatively small for a whole year. 
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Figure 2-21: “Long- term variation of daily load factor in all-electric houses” 

 
b) Combined energy source houses 
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Figure 2-22 indicates the variation of day load factor ratio in combined energy source houses. In 
Hokkaido 07, except for the New Year when residents are away from home and almost no energy 
consumption was shown, a day load factor ratio of around 20% was indicated throughout a whole year. 
In contrast, the ratio in Hokuriku 03 and Kyushu 04 varies widely in a day with difference of 56% and 
43.7%. The lowest ratio of daily load factor of 9.7% occurred on May 20th in Hokuriku 03 and 6.7% 
on August 3rd in Kyushu 04. 
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Figure 2-22: “Long- term variation of daily load factor in combined energy source houses” 
 
1.2.5 Conclusion 

(1) In all-electric-houses, the occurrence times of peak electricity in winter are concentrating at 
midnight due to the operation of hot water supplier and thermal storage heater. 

(2) In combined energy source houses, the peak electricity consumption are distributed widely day by 
day while in all-electric houses it varies depending on the season. Therefore, the performance 
advantage of appliances is important in order to make the energy load flat. 

(3) Use of electricity for heating has a great influence on increasing energy consumption. When 
excluding night-time electricity consumption, peak electricity was found when occupant use 
electric stove in all-electric house. Therefore, a strategy for increasing the efficiency of electric 
cooking devices is required in order to smooth the peak electricity consumption. For the long-term 
variation of annual peak electricity frequency, there was a seasonal difference in all-electric 
houses especially in houses which use electric space heating. On the other hand, there was a huge 
difference within one day in the combined energy source houses. 

(4) Frequency distribution of peak electricity consumption a year is spread out in all-electric house 
because of the seasonal difference of electricity consumption.. 

(5) Ratio of the daily load factor decreases as the season changes from winter to summer in all-
electric houses. In combined energy source houses a huge variation was found in a day. 

 
Reference: 
[1] Hiroshi Yoshino, Shuzo Murakami, Shin-ichi Akabayashi, Kazuaki Bogaki, Toshihiko Tanaka, 

Hirofumi Hayama, Akihito Ozaki, Hanako Sugawara: SURVEY OF THE PEAK ELECTRIC IN 
RESIDENTIAL BUILDINGS : Analysis of the data from survey of energy consumption for 80 
houses in Japan, AIJ. Journal of environmental engineering(610), pp.99-106, 2006 
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1.3 Experience2: Application of the prediction model for building energy use assessment. 
Analysis of BEMS database by using multivariable regression analysis 

1.3.1 Introduction 

Principal component regression (PCR) and partial least squares regression (PLSR) present application 
of principal component analysis (PCA) in linear models. PCA can be used for different purposes. 
Some of applications are establishing relationships among data in databases and fault detection and 
diagnosis. Due to wide application of PCA, there have been developed software based on PCA (The 
Unscrambler® X [1]) and specialized calculation tools within MATLAB. PCR and PLSR were 
implemented to analyze building energy management system (BEMS) data and to relate them to the 
building energy use. 
The idea was to encourage a smart use of BEMS data for energy use analysis. Databases of 76 and 41 
variables, which included occupancy level, control signals, and water and air temperatures, were used 
to explain heating, electricity, and fan energy use. Variable contributions to the principal components 
(PCs) were used to simplify model and found the most important variables. This way, energy use was 
defined indirectly by using available variables in BEMS. The approach was tested on a low energy 
office building located in Trondheim, Norway. The suggested approach could be used by building 
operators to identify opportunities for decreasing energy use and for energy use estimation when data 
were lost due to data transmission problems. 
In this study analyzed databases for prediction of heating energy use and electricity use were 
developed with BEMS data. Even though BEMS data are different in nature, temperature, control 
signals, pressures, etc., they can be correlated. For example in office buildings at the mid of day, 
outdoor temperature is usually higher, equipment is ON, occupancy level is higher in office building, 
while during the night time situation is usually opposite. In addition, BEMS data are correlated to time. 
Therefore, it could be useful to decouple data and establish new variables that would be uncorrelated. 
These new uncorrelated variables should be used to define building energy use. PCA may also be used 
to analyze time series, if variables of time are included as predictor variables. 
 
1.3.2 Aim of the analysis 

The aim of the study was to identify driving variables that contributed to energy use in low energy 
office building by integrating BEMS and energy use data. 
 
1.3.3 Database structure 

Available data from BEMS were used as predictor variables, while the heating energy use, the total 
electricity use, and the electricity for fans were used as target variables. BEMS data that were used for 
the predictor variable databases are given in Table 2-2. To effectively present variables, in Table 2-2 
variables for only the first air handling unit (AHU) 36.01 are presented, because variables for the 
seven rest AHUs were the same except that their values were different in operation depending on use. 

Table 2-2: Database description predictor variables 
Variable name Description Value range Application 

Day Day of week 1 for working, 2 for nonworking H*,E*,F* 

Hour Hour 0 – 1,  H*,E*,F* 

Tout Outdoor temperature -20 – 30 oC H*,E*,F* 

Tin_R4031 Indoor temperature in the 4th floor office 18 – 23 oC H*,E*,F* 



96 
 
 

Tin_R4010 Indoor temperature in the 4th floor office H*,E*,F* 

Tin_R4099 Indoor temperature in the 4th floor office H*,E*,F* 

OCC_R4031 Occupancy level in the 4th floor office H*,E*,F* 

OCC_R4010 Occupancy level in the 4th floor office H*,E*,F* 

OCC_R4099 Occupancy level in the 4th floor office 

0.5 (not occupied), 1 – 1.5 (bypass), 

3 (occupied) 
H*,E*,F* 

320.SB40 Valve position in the main branch 0 – 100 % H* 

320.RT40 Supply temperature in the main branch 30 – 70 oC H* 

320.RT50 Return temperature in the main branch 30 – 60 oC H* 

320.02.RT40 Supply temperature in floor heating 20 – 35 oC H* 

320.02.RT50 Return temperature in floor heating 20 – 30 oC H* 

320.03.SB40 Valve position for snow melting 0 – 100 % H* 

320.03.RT40 Supply temperature for snow melting 20 – 35 oC H* 

320.03.RT50 Return temperature for snow melting 15 – 25 oC H* 

320.04.SB40 Valve position in the radiator branch 0 – 100 % H* 

320.04.RT40 Supply temperature in the radiator branch 30 – 70 oC H* 

320.04.RT50 Return temperature in the radiator branch 25 – 55 oC H* 

36.01.LK Valve position at heating/cooling coil 0 – 100 % H* 

36.01.LV Valve position at heating coil 0 – 100 % H* 

36.01.RT55 Return temp. after LV AHU 20 – 50 oC H* 

36.01.LX01 Input signal for recovery wheel 0 – 100 % H*,E*,F* 

36.01.JV40 Input signal for supply fan 0 – 100 % H*,E*,F* 

36.01.JV50 Input signal for exhaust fan 0 – 100 % H*,E*,F* 

36.01.RT40 Supply air temperature 16 – 24 oC H*,E*,F* 

H – heating energy use, E – electricity use, F – fan electricity use 

Monitoring of the energy use in the energy service database was on hourly basis. Therefore, data from 
BEMS in Table 2-2 were calculated as hourly mean values. The column “Application” in Table 2-2 
shows for prediction of which energy use the variables were used. 
 
1.3.4 Relevant influencing factors 

Much data can be measured via BEMS. In general, it can be assumed that all these data contribute to 
some extent to the building energy use. If the entire BEMS database is used in the PCR and PLSR to 
establish the energy use model, then all the BEMS data would be related to the building energy use. 
However, the BEMS data can be correlated and then a data redundancy could appear. To extract the 
most important data that contribute mostly to the building energy use, it could be beneficial to scale 
the models obtained by using PCR and PLSR. Model scaling from a model based on the database to a 
model based on 10 variables was performed based on the predictor variable contribution to PCs. 
Model scaling in this way was used to identify driving variables. 
 
1.3.5 Model type 

Partial least squares regression (PLSR) and principal components regression (PCR) are both methods 
to model a response variable when there are a large number of predictor variables, and those predictors 
are highly correlated or even collinear. Both methods construct new predictor variables, known as 
principal components (PCs), as linear combinations of the original predictor variables. Detail theory 
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behind the application and use of the PCA is explained in [2]. Important relations for this analysis are 
explained in [3]. 
To decrease number of variables and find the most influencing, the PLS weights and PC loadings were 
used. The PLS weights are the linear combinations of the original variables that define the PCs in the 
PLSR. Actually, they describe how strongly each component in the PLSR depends on the original 
variables. Similarly, the PC loadings describe how strongly each component in the PCR depends on 
the original variables. 
 
1.3.6 Results and discussion 

Use of the entire databases to calculate target variables could be demanding and requires specific 
computer programs to perform calculation. Smaller database of predictor variables with several 
variables could be very simple for practical use and presentation of influential parameters on the 
building energy use. To introduce approach for decreasing number of variables gradually, method 
effectiveness are presented first. Method effectiveness was estimated by using model accuracy. 
Accuracies for the heating energy use model for both regression methods and different amount of data 
are presented in Figure 2-23. In Figure 2-23, accuracy is presented by coefficient of variation of the 
root mean squared error (CV(RMSE)), which was estimated by using 10-fold cross validation. 
 

 
Figure 2-23: Accuracy of the heating energy use model for different amount of data and different 

methods 
 
In Figure 2-23, the model accuracies are presented as function of number of used PCs to model the 
target variable. Models are declared to be calibrated if they produce CV(RMSE) within ±30% when 
using hourly data [4]. This means that the models developed by using the entire database in Figure 2-1 
have acceptable accuracy when four PCs were used, while the models described with 10 variables 
produced acceptable accuracy already with two PCs. In Figure 2-23, it is also possible to notice that 
the 10 variable models had faster improvement then the models based on the database. This faster 
improvement of the simpler models indicated that there were redundancy and mutual correlation 
among variables in the database. In Figure 2-24, when comparing the regression methods, it is possible 
to notice that PLS regression has faster improvement than PCR, either by using the entire database or 
10 variables. This result was expected, since in the PLS regression method PCs are obtained to directly 
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reflect the relationship between the predictor and the response [2]. In PCR method, the PCs explain 
only variation in the predictor variables, with no regard to the target variables.  
In Figure 2-24 it was shown that the models with 10 variables could achieve acceptable accuracy and 
even faster improvement due to decreased redundancy. These 10 variables were chosen based on PLS 
weights. 
To simplify models based on the entire databases and find the most influencing variables, values of 
PLS weights on the first four PCs were used. The first four PCs were used because of the results 
related to the percent of the variance explained in the predictor variables. 97 % of the model variance 
was explained in the first four PCs for the heating energy use model as shown in Figure 2-25. 99 % of 
the model variance was explained in the first four PCs for the electricity use model as shown in Figure 
2-25. Therefore, the first four PCs were assumed to be enough for the analysis on the important 
variables. 

 
Figure 2-24: Percent variance for heating energy use with 10 variables 

 

 
Figure 2-25: Percent variance of electricity use model with 10 variables 

 
Procedure of defining driving variables consists of two parts. First, matrixes of the original variables 
defined in Table 2-2 were normalized. Afterwards, the first 10 variables that had highest contribution 
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to the first four PCs, were chosen as the model important or driving variables. The same procedure 
was repeated for each target variable, heating energy, electricity, and fan electricity use. 
PLS weights on the first four PCs for the heating energy use, the total electricity use, and the fan 
electricity use are displayed in Figure 2-26, Figure 2-27, and Figure 2-28, respectively. If a variable 
has high contribution to PCs, then PLS weights have higher values, and consequently it could be 
concluded that that one contributes to the target variable. In Figure 2-27, Figure 2-28, and Figure 2-29 
driving variables for energy use in November are shown. 
 

 
Figure 2-26: PLS weights of 10 important variables for heating energy use model 

 
By using procedure for model scaling and finding driving variables based on PLS weights, it was 
found that the most important variables of the heating energy use are outdoor temperature, control 
parameters and temperatures in the substation, and some of ventilation parameters. These ventilation 
parameters were related to the AHUs that were mostly in use. In Figure 2-27, PLS weights of the 
different variables on the first and second PC had quite similar values, while on the third and fourth 
PLS weights were different. Therefore, the values of PLS weights on the third and fourth PC could 
explain variable importance. Based on that, it is possible to conclude that the heating energy use was 
influenced by the operation parameters rather than by the outdoor temperature. 
 

 
Figure 2-27: PLS weights of 10 important variables for electricity use model 
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Figure 2-28: PLS weights of 10 important variables for fan electricity use model 

 
Results in Figure 2-28 show variables that could explain the total electricity use in November. Among 
10 variables, occupancy level, indoor temperature, and parameters of the fourth AHU were variables 
that could explain the electricity use well. The fourth AHU was supplying the most typical occupied 
part of the building. Results in Figure 2-28 shows that occupancy level could be included in the 
electricity use model. In this model, occupancy level and indoor temperature had significant 
contribution already on the second and third PC. Negative values of PLS weights of the occupancy 
level and indoor temperature should not imply directly negative influence on the target variable, 
because the original variable matrix was normalized. In the case of normalized original variable matrix, 
values of PLS weights should indicate variable importance to the model. 
 
1.3.7 Conclusions 

The PCA application in linear models was implemented to utilize BEMS data for energy use 
estimation and identifying of driving variables of energy use. The idea was to relate building 
information with the building energy use. PCR and PLSR were used to relate BEMS data to the 
building energy use. BEMS data were used as original predictor variables, while the heating energy 
use, the electricity use, and the fan electricity use were target variables. To simplify models and find 
the most influencing variables, values of PLS weights on the first four PCs were used. The suggested 
approach was tested on the low energy office building, located in Trondheim. The analysis showed 
that it is possible to utilize PCR and PLSR to analyze BEMS database. The methods are robust and it 
is possible to perform different analysis. In this analysis, these methods were implemented only to 
relate BEMS data to the building energy use and to identify important variables. The important 
variables were identified by scaling the models. In this case, the model scaling meant that the models 
based on the entire BEMS database were scaled to models with fewer variables. 
The results showed that the heating energy use in the low energy office building was influenced by the 
operation parameters rather than by the outdoor temperature. The total electricity use could be 
explained by using occupancy level, indoor temperature, and some of the AHU electrical signals. The 
AHU electricity use could be explained by using the input electrical signals of supply and exhaust fans. 
However, results indicated that the regression models should be updated on monthly level. All the 
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simplified regression models with 10 variables had acceptable accuracy. This indicated that driving 
variables obtained by using suggested approach could be used to explain building energy use. 
Further, this approach could indicate possible reasons of change in building energy use. Current results 
showed that PLS regression method was more accurate in recovering the heating energy use, while 
PCR was more accurate in recovering the electricity use. The results showed that important variables 
were different for different months in the case of heating energy use. The total electricity and fan 
electricity use could be defined with the same variables in different months. The total electricity use 
could be defined by using occupancy level and input fan signals. 
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1.4 Experience 3: Modeling Occupant Behavior in multifamily houses 

(Marcel Schweiker) 
 
1.4.1 Subject of the work 

This work is dealing with the frequency of usage and the set-point temperature selection of AC-units 
for cooling and heating in an international student dormitory in the Tokyo area. Both parts are directly 
related to the energy used within the building. The setting of the measurement of 15m2 rooms with 
multiple possibilities to adjust the indoor conditions, described in detail in [1], allows the observation 
of the individual occupant's behavior in a laboratory-like setting. 
 

Table 2-3: Data on building 
Type of building International student dormitory 

Dimension 320 rooms of 15 m2 each 

Location Tokyo, Japan 

Thermal characteristics  Low level of insulation and single-glazing windows with aluminum frame 

Type of observed spaces  Single-room apartment 

Year of construction  1989 

No. of floors  5 

Windows, orientation  One window each (either E, S, W) 

Window opening sliding 

Shading devices  Fixed overhang 

Sources of heat gains  Fridge, computer, lights, occupancy 

Activity, sex and age of occupants  Students (M or F, 20-35) 

Origin of occupants  27 different countries from 5 continents 

 
1.4.2 Building characteristics 

The building was opened in 1989 and is a 5-storied building with 320 identical single rooms (see 
Figure 2-29). The construction is made of concrete with little thermal insulation and single glazed 
windows. The single rooms of 15m2 each including the bathroom are oriented to east, south or west. 
Each room has one door facing to the corridor and one window with curtain on the opposite side, and 
is equipped with one air-conditioning unit for heating and cooling. The residents are free to use 
electrical fans or other measures to keep their rooms as comfortable as possible without using the air-
conditioning unit. 
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Figure 2-29: View into one of the rooms. 

 
1.4.3 Aim of the work 

In reality, the occupant behavior is expected to be influenced by quite a large number of factors, both 
external and internal. In order to apply the important findings related to occupant behavior in 
disciplines such as social sciences and neural sciences to the empirical models based on the measured 
data within the field of building sciences, this work describes an empirical determination of the 
external and internal factors and their constants for the case of air-conditioning usage in a residential 
setting under Japanese climatic conditions. Knowing such model and the influence of each factor on 
the behaviors will be useful on one hand to design buildings, especially residential buildings, 
supporting the occupants towards a less exergy consuming lifestyle with sufficient well-being and on 
the other hand to help support the occupants in the existing buildings towards also the less exergy 
consuming lifestyle. 
 
1.4.4 Database characteristics 

Table 2-4: Database characteristics 
Number of buildings 1 

Period of measurement 
29.06.2007 - 13.08.2007 

11.01.2008 - 

11.02.2008   

Duration (days) 46 32 

Number of observed spaces  39 34 

Number of observed spaces with window 

sensors 

19 24 

 Items Interval 

IF1. Climate Outdoor air temperature, humidity, wind speed, solar radiance 2 minute 

IF2. Building envelope Not in database  

IF3. Building service & Systems   

IF4. Operation & Maintenance   

IF5. Indoor environmental quality Indoor air temperature, humidity 2 minute 

IF6. Occupants’ activities and behavior State of AC-unit (on/off/set-point temperature)1)  Event 



104 
 
 

Window state (open/closed) 

IF7. Social and economical aspects Occupants personal preferences, individual characteristics (age, 

sex, height, weight), personal background (country of origin, 

sleeping habits during childhood, ...) 

 

1) not measured, but derived from data 
 
The data base used for the present investigation comes from two measurements in above described 
building. The two measurements were conducted around the hottest weeks of Japanese summer in 
2007 from 29 June to 13 August and the coldest weeks in winter, early 2008 from 11 January to 11 
February. Figure 2-30 shows the frequency of prevailing outdoor air temperatures both in summer and 
winter. 
 

 
Figure 2-30: Distribution of outdoor air temperature during the summer measurement in 2007 and 

that during winter early 2008. 
 
For the physical measurements, one wireless temperature and relative-humidity sensor and another 
wireless sensor logging the times the window was opened or closed were installed in each of the 39 
observed rooms. As well as this, additional sensors were installed to measure the outdoor air 
temperature, relative humidity, solar irradiance and wind speed (wind speed was only measured for the 
summer case). The occupancy could not be explicitly recorded during the daytime, but the students 
stated the nights they were not sleeping in their rooms as well as continued absence for more than a 
day. The measurement took place in all observed rooms at the same time with a logging interval of 2 
minutes. This garnered 30325 data sets for each room for the six-week summer measurement, and 
22080 data sets for the four-week winter measurement. These physical measurements were 
accompanied by an introductory written questionnaire survey and a personal interview, which 
included questions about the students’ current and past cooling and heating behavior, their thermal 
background, lifestyle, preferences, knowledge of passive heating and cooling strategies and personal 
evaluation of the effectiveness of those strategies. 
 
1.4.5 Method/Methods applied for the data analysis 

The model development consisted of three steps. The models derived in each steps were called 
standard, advanced and final models for winter and summer season, respectively. For the standard 
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models, the use of the AC-unit for cooling and heating in relation to the mean outdoor air temperature 
was analyzed using the logit model. The analysis was done for the whole day period of 24hours, and 
then for three different periods within the day, namely daytime (8am to 6pm), evening (6pm to 12am) 
and night-time (12am to 8am). The parameters of the model were calculated with the statistical 
software package R as a function of the mean outdoor air temperature, based on the two-minute data 
points of the respective period of time. 
For the advanced models, factors other than the outdoor air temperature during the night in question, 
were analyzed. 
 
The general form of a logistic model is expressed as follows: 
 

 (1) 

 

where, plog is the probability that the AC-unit is used, Toav is the mean outdoor temperature of the 
respective night, xj are additional factors and α, ß1 as well as ßj are constants to be determined by 
statistical analysis. The simplest model, which was used for the standard model, is the one with a 
single parameter of mean outdoor temperature only, namely the model with ßj = 0 except for j=1. For 
the advanced models, those factors having a coefficient signaling an above-average linear relationship 
with the AC-unit usage were taken as the starting point for the selection process of a rational statistical 
model. 
As the decision criterion during the selection process, Akaikes Information Criterion (AIC) [2] was 
used to determine whether the alternative model is better than the current model. The AIC is 
calculated by taking into account the fit of the model compared with the data together with the number 
of variables used in the model. The lowest AIC-value is supposed to be calculated for the model which 
best describes the measured data with the minimum number of variables necessary. When comparing 
two models, only the absolute difference ∆AIC between their AIC values should be evaluated and not 
the absolute values themselves. In order to define one model as being better than the other, ∆AIC should 
be greater than 2 [3]. Because of quite a few possible combinations of variables to define a model, the 
“stepAIC” function within the software R, which automatically selects the model with the smallest 
value of AIC, was used [4]. In addition, Nagelkerke's R2 index was calculated, which was adapted to 
mimic the R2 analysis for logistic regression [5] to have a second index when comparing the different 
models. 
 
For the final models, having the same form as shown in eq. (1), the advanced models were amended 
with individual factors in order to show their influence on the behavior of AC-unit usage at night-time 
following the findings of [6]. Due to the fact that none of the students grew up in Japan, it was 
possible to include a variable related to different climate groups referring to their region of origin. This 
was called “thermal background”. Using the climate map of Koeppen [7], the students were sorted into 
four groups: hot and dry, hot and humid, moderate, and cold climates. There was no student from a 
polar climate region. 
The “stepAIC” function was used again in order to reduce the number of variables implemented into 
the logit model for predicting the percentage of AC-unit usage in relation to external and individual 
factors. 
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1.4.6 Results 

Influence of season and time of day 
Figure 2-31 shows the relationship between the average outdoor air temperature and the percentage of 
persons using the AC-units for cooling. Each plot represents the average of all students for each of the 
43 measured days in summer. The lines represent the best-fit of these plots and are similar to those 
presented in the foregoing studies for window opening behavior [8 ,9 ]. Compared to the curve 
presented by Nicol and Humphreys [10], where the value of temperature resulting in half of the 
persons using AC-units (T50) is around 29°C, we get a similar value for the case of daytime, but a 
much lower value of T50, 23 to 26°C, which in turn means a more frequent use of the AC-unit for all 
other periods of the day.  
 

Figure 2-31: Relationship between outdoor air 
temperature and percentage of persons using AC-
units for the case of cooling in summer time. The 

outdoor air temperature is the value for 
respective period as shown inside the graph. The 

thin dotted lines along with the bold lines in 
between show the limits of the 5% confidence 

interval of the respective line. 

Figure 2-32: Relationship between outdoor air 
temperature and percentage of persons using AC-

units for the case of heating in wintertime. The 
thin dotted lines along with the bold lines in 

between show the limits of the 5% confidence 
interval of the respective line 

 
Looking at the difference between the times of the day, it is clearly visible that the AC-unit is used 
more during night-time than daytime. This can be explained by the lifestyle of the students, who have 
to leave their rooms in order to go to university or work. Due to the circumstances of this study that 
the real occupancy was known only for the night-time, the lines for other periods must be too low if 
we assume an occupancy rate of 100%. For the prediction of a similar type of building, these lines can 
be used as combination of occupancy and behavior. The analyses of all other models to be described 
later were based only on the night-time period, where the true occupancy rate was known. 
Figure 2-32 shows the logit lines for the heating case. While the logit curve presented by Nicol [11] 
for heating with general heating devices approaches 100% around a value of mean outdoor 
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temperature of 2°C, the curves shown here are much flatter. Especially the flatness of the curve for the 
night period shows that around 40% of people sleep without any heating system regardless of the 
outdoor temperature and adjust themselves with additional layers of clothes and blankets. This 
statement can be partly supported by the answers given to the questionnaire survey. The question 
whether one prefers to sleep in a room a) heated with an AC-unit, b) heated with other means than an 
AC-unit or c) not heated at all, was answered by more than 33% of the students with c). This number 
is a bit lower than the 40% obtained from the measured data, but still in the same range. 
By comparing both figures it can be seen that the percentage of AC-unit usage is much more 
dependent on the outdoor conditions during summer time than winter time. The most obvious reason is 
the greater possibility of clothing adjustment during wintertime than in summer time, although 
clothing adjustment was not part of our survey. Further reasons are the special conditions within this 
dormitory, which has in general a higher indoor temperature than other buildings due to the high 
density of people, lights and electronic appliances. The latter reason also applies to the comparison 
with the logit lines presented by Nicol and Humphreys [12]. 
 
Influence of foregoing nights 
The following results were derived from a closer look at the decision to sleep with the AC-unit on or 
off. This was in particular interesting to investigate, as it is a decision made before knowing how the 
thermal conditions will change during the sleeping period and results in a different amount of exergy 
consumption for cooling and heating during each period. 
According to the statistical analysis of various external factors and their influence on the AC-unit 
usage, the best prediction was achieved by considering the mean outdoor air temperature of the night 
in question Toav, the mean outdoor temperature of the first and third night before, Toav-n1, Toav-n3, and 
only for the winter case the mean outdoor temperature during daytime just before the night in question 
Toav-dt. Table 2-5 shows the corresponding values of constants (α, ß1-ß4) and the comparison between 
the standard models and the advanced models. The advanced model for the summer case shows a 
better fit to the measured data; the difference in AIC value, ∆AIC, is 17.9 and also the R2-index is a 
little bit higher, even though it is still very low. Despite a high variation in relative humidity during the 
measurement period between 46% and 99%, the tested factors concerning humidity, namely the mean 
relative humidity of the respective night, the evening and daytime before as well as the night 
beforehand, did not show any linear or other correlations with the usage of the AC-unit. 
 

Table 2-5: Comparison of standard and advanced models to predict the percentage of persons 
using their AC-units during night-time in summer and winter 

  α β1
1) ß2 ß3 ß4 AIC R2 

summer 
standard 

advanced 

10915±0.67 

71663±0.82 

0.374±0.03 

0.245±0.42 

 – 

0.120±0.04 

– 

0.0914±0.03 

– 

– 

1571.8 

1553.92) 

0.184 

0.203 

winter 
standard 

advanced 

0.888±0.09 

0.657±0.20 

-0.0286±0.04 

0.0147±0.04 

– 

-0.0221±0.04 

– 

-0.0382±0.03 

– 

-0.0469±0.04 

1250.1 

1252.13) 

0.001 

0.007 

 
1) All of βj are related to the mean outdoor temperature: β1 for respective night; β2 for one night before; β3 for three nights 

before; β4 for daytime 

2) ∆AIC, for summer: |1571.8 - 1553.9 | = 17.9 

3) ∆AIC, for winter: |1250.1 - 1252.1 | = 2 
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In the case of winter, the advanced model has a little higher AIC value compared to the standard 
model; it is not possible to conclude which model describes the data better, since the difference in AIC 
value between standard and advanced, 2, is too small. The R2-index is also extremely small. For 
simplicity, ß1 to ß4 were combined into one variable, the running mean outdoor temperature. 
 
Influence of individual factors 
The final models include the temperature related factors and several individual factors. The variables 
and parameters of the final models for summer and winter can be found in [13]. A separate discussion 
of each factor is given in Appendix B of [14]. In order to be able to judge how much one factor in the 
model influences AC-unit usage behavior, the importance of one factor compared to the others can be 
calculated as the product of the absolute value of the coefficient (the respective value of ß) and the 
range of the variable. This product was called the “importance value”. 
Comparing the AIC values of the models, the difference in AIC values ∆AIC between the advanced 
models and the final models as well as between the standard models and the final models are 
exceeding 300 in the case of summer and 400 in the case of winter. As stated above, a value of 2 is 
necessary to be able to declare one model as better than another, therefore the result shows that the 
advanced model leads to a much better prediction of the individual occupant behavior by considering 
various individual factors. This is also supported by the R2-indices that are both in a range between 
medium and large for the final models.  
 

 
Figure 2-33:  Comparison of the sum of importance values for groups of variables 

 

The results of summing up the importance values of the respective factors shown are presented in 
Figure 2-33. Quite different results for summer and winter can be observed. In summer, the most 
important groups are “T) temperature related factors” and “h) individual differences in rooms”, while 
on the other hand, the least important are “e) behavioral background” and “f) cultural background”. In 
winter the most important are “f) cultural background” and “g) demographic data”, while the least 
important are “T) temperature related factors” (ß3-ß4) and “c) current thermal environment”. This 
shows that the external factors have a strong influence on the behavior in summer, but a very small in 
winter. Similar findings are present in the design of the new European Standard EN 15251, where there is 
no further change in the comfort limits below an outdoor temperature of 10°C. 
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The sum of importance values of “T) temperature related factors“ together with “h) individual 
differences in rooms” and that of all other factors turned out to be 11.2 and 14.6 for summer and 4.0 
and 34.4 for winter, respectively. This shows that factors generating from experience, attitude and 
origin affect the reference level as much as the external conditions in summer and even much more in 
winter. 
 
Application to set-point temperature 
Analyzing the data from the field measurement it was also found that there is a rather huge difference 
between individuals in the indoor air temperature preferred and chosen. To analyze these differences, a 
linear multiple regression analysis was done for the same factors that appeared in the final models 
described above.  
One would normally define the desired room air temperature to be the temperature chosen by the 
occupant and displayed on the remote control (also called the set-point temperature). However, the set-
point temperature was neither observed within the measurement nor asked in the surveys. Even though 
the indoor air temperature is especially in the first minutes after switching on the AC-unit different 
from the set-point temperature, it is reasonable to assume the room-air temperature being similar to the 
set-point temperature for the steady-state case, which assumes that there was no change in the status of 
the AC-unit. Additionally, one can say that the indoor air temperature, not the set-point temperature, 
must be the temperature judged by the occupant as being comfortable, because otherwise they would 
have changed the status of the AC-unit with the remote control.  
Therefore, the decision was made to use the indoor air temperature instead and to analyze the data 
from the student rooms according to the average of the maximum air temperatures during one period 
of the AC-unit usage. This led to the determination of the constants for the linear formula of the indoor 
air temperature as a function of the same factors as present in the final models: 

   (2) 
The values for the coefficients can be found in [13]. With the result of linear regression analyses, a 
direct interpretation of the coefficients can be done. In such a way, it can be seen, that the choice of 
set-point temperature is influenced by the outdoor conditions together with individual preferences and 
characteristics. For each degree rise in the outdoor temperature, the set-point temperature increases by 
0.43°C, while for example those who stated to prefer sleeping with an AC-unit on, maintain it at more 
than 2°C lower than those who prefer not to have it switched on during nighttime. In winter, the 
outdoor conditions have a neglectable influence on the choice for set-point temperature; each degree 
rise in the running mean outdoor temperature leads to an increase of the set-point temperature of only 
0.00012°C. On the other hand, the influence of individual preferences increases; the before mentioned 
factor related to the preferences leads in this case to an increase in the set-point temperature of 4.8°C. 
It must be easy to imagine, that such difference leads to corresponding variations in the energy usage 
as well. 
 
Effect on energy usage 
The obtained regression models can be used directly for simplified steady-state calculations of the 
energy usage for AC-unit usage. Please refer to [14] for a detailed description of the calculation 
procedure. 
Based on the regression models, one can assume two types of occupants, one preferring to sleep with 
an AC-unit switched on, the other not. As found by the approach presented above, the one who does 
not like to sleep with an AC-unit is still using it when necessary. However, the usage has a lower 
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frequency and in summer a higher and in winter a lower set-point temperature. The choice towards a 
lower indoor room air temperature in winter leads thereby to a reduction of the energy usage by 25% 
to 30%. The combined effect of indoor air temperature choice and percentage of AC-unit usage leads 
to a reduction of 40% to over 90% and strongly depends on the outdoor air temperature. The reduction 
is in winter larger with higher outdoor temperature and in summer with lower outdoor temperature.  
 
1.4.7 Discussion 

Regression analyses were chosen in order to analyze the influence of physical and individual factors 
on the frequency of AC-unit usage for cooling and heating as well as the chosen set-point temperature. 
This method allows a straight-forwarded combination of factors in a continuous form (e.g. temperature 
levels) with those being in a binary form (e.g. gender) into one combined model. Limitations are in the 
individual modulation of each variable. I.e. a variable can either influence on the outcome in a positive 
manner over its full range or in a negative manner, but e.g. not in a U-shaped manner. To overcome 
this limitation, a variable could be included not only in its first power, but also in its second, third, … 
power. One of the main potential of this application is, that the outcome of the regression analysis (an 
equation to calculate a dependent variable based on individual variables together with their 
coefficients) can be easily implemented in advanced simulation tools, such as IDA-ICE or TRNSYS. 
Using the AIC-value for model selection assures models, which have a good fit, while being as simple 
as possible. Nevertheless, such procedure is valid for nested models only, so that it can be used as 
done in this case to decide whether a variable should be included into a model or not, but not to 
compare two distinctive models. Calculating the importance values for each variable in the model, the 
magnitude of the influence on the outcome variable (here frequency of AC-unit usage) can be 
compared between all variables. The importance values appeared to be easy in its application, but 
strong in its interpretation. It could be therefore used in order to evaluate directly the influence of 
various factors on the energy usage; and not only as done here directly over the occupant behavior. 
In conclusion, the methods applied here to models for AC-unit usage, could be used to derive models 
for energy usage, including a well established procedure to decide on the acceptance or rejection of 
single factors and statements with respect to the magnitude each factor has on the outcome. 
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1.5 Experience 4: Analysis of the occupant behavior in relation to the energy concept of an 
office building 

(Fatma Zehra Çakıcı, Karin Schakib-Ekbatan, Marcel Schweiker 
 
1.5.1 Introduction 

Office buildings represent an important part of our living environment. With respect to energy 
consumption, occupant satisfaction and behavior are worthwhile issues in the context of sustainable 
office buildings with innovative technologies and materials [11],[6],[8]. The experiences show that 
there is often a gap between the predicted energy consumption based on simulation and the 
consumption during the day-to-day operation once the building is in use. Within the complex bundle 
of aspects such as design, construction, maintenance and occupant expectations the occupant behavior 
might not fit with the energy concept and cause counterproductive behavior. The “Desire for Control” 
[2] over ambient environmental conditions such as temperature or indoor air quality however has a 
strong impact on the well-being of the employees [10]. The understanding of the relationship between 
building and user behavior therefore plays an important role in the consideration of the energy 
consumption. Thus, the focus of this work is to explore patterns of energy-related behavior such as 
window-opening at the workplace, which is the most favorite taken adaptive opportunity [1]. 
Perennially gathered data for outdoor and indoor climate as well as occupant behavior from a 
monitoring project in a German office building with a passive cooling concept are analyzed [5]. In 
contrast to the other works, which are using complex statistical analyses in order to analyze the 
reasons for the discrepancy between predicted and monitored energy consumption, this work follows a 
different strategy. First, simple statistics of occupant behavior are shown to analyze differences due to 
the orientation of the room and the occurrence of not optimal behaviors. Second, logistic regression 
analyzes are presented in order to analyze the influence of indoor and outdoor conditions. 
 
1.5.2 Subject of the Work  

The Ostarkade is an extension of the building complex of the KfW Bankengruppe based in Frankfurt 
am Main, the largest city in the German state of Hessen. Frankfurt is located in central Germany with 
a temperate-oceanic climate with relatively cold winters and warm summers. The building is naturally 
ventilated and cooled in summer with a nighttime ventilation concept. Above the two-level 
underground car park, the building has five floors of mainly offices and meeting rooms, hosting about 
350 employees. On the fourth floor, there are group offices for exchange traders, while the north-west 
part of the building is used for special purposes. Offices and apartments are grouped around an atrium 
with glazed roof. This allows natural lighting for the traffic zones which lead into the atrium. To make 
enough space available for a large conference hall on the ground floor, the atrium begins on the first 
floor. 
 

Table 2-6: Building characteristics 
Name of the building  The KfW Ostarkade 

Type of building Multi-storey office building 

Dimension 17402 m2 (8585 m2 heated) 

No. of Employee ~350 employees 

Location Frankfurt, Germany 

Thermal characteristics  Low energy standard of building envelope (U-values walls 0.24 to 0.5 W/m2K, windows 1.5 W/ 
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m2K)) 

Type of observed spaces  Office rooms 

Year of construction  2002 

No. of floors  2-level underground car park + 4 office floors + 1 floor apartments on top 

Windows, orientation  Mostly E and W 

Window opening Tilt-and turn 

Shading devices  External sun protection (automatic + occupant driven mode) 

 
The construction of the multi-storey office building was completed in 2002. The building shows an 
ambitious integral planning concept. From the beginning, the KfW Bankengruppe outlined very strict 
design criteria in terms of energy efficiency since the group is Germany’s largest development bank 
with funding programs for energy efficiency in existing and new private buildings. Therefore, 
concepts for saving water and energy optimization for heating, cooling, ventilation and lighting were 
developed for the Ostarkade building. 
 

  
Figure 2-34: Exterior view of the KfW Ostarkade building 

from the South-East 
Figure 2-35: Ground floor plan of the 

building 
 
The building's structural system is a  reinforced concrete construction. . The façade is insulated 
externally and has a U-value between 0.24 and 0.5 W/m²K. The south facing façade of the building is 
a double-skin façade for noise reduction reasons. The roofs have a foam-glass insulation and are 
equipped with roof greening to a large extent. The compactness of the building and the high insulation 
standard minimize its transmission heat losses. With an average U-value of 0.54 W/m²K (façade 
including windows), the building exceeds the requirements of German Energy Saving Standards of the 
year 2002 by approx. 30%. In the standard offices the concrete ceiling is directly exposed and merely 
surfaced with a thin layer of plaster. This thermal mass increases the building’s thermal inertia and 
was essential for the passive cooling concept with night ventilation. Pipes, cables and ducts are laid in 
elevated floors. 
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Figure 2-36: Natural ventilation via the atrium is 
used for night ventilation 

Figure 2-37: The atrium lights the traffic areas 
and enables natural ventilation 

 
A moderate percentage of glazing, an exterior automatic shading system and the use of solar control 
glass reduce the solar heat gains from outside. High windows, light-diverting blinds and the proximity 
of workplaces to the window enable very good use of daylight, thereby reducing the amount of 
electricity required for artificial lighting. The insulating glazing that is used has a less than 40% of 
total solar energy transmittance, a U-value of 1.5 W/m²K and 70% light transmittance. 
 

  

Figure 2-38: Two-part sun protection enables 
glare-free use of daylight 

Figure 2-39: Double-skin façade facing the very 
busy road 

 

The building combines a high energy standard with high occupant comfort. The natural ventilation of 
the offices and the night ventilation cooling concept have proven good performance in practice. Even 
in 2003, the hottest summer in Germany within the last hundred years, comfortable conditions were 
maintained in the offices without mechanical ventilation or active cooling. This required appropriate 
manual ventilation with windows and the correct use of the sun protection. Excluding the energy 
consumption for the building control equipment and IT as well as for other specific technical services, 
the annual primary energy consumption was less than 100 kWh/m² in the third year of monitoring 
which is close to the predicted value of 107 kWh/m². Thus the energy consumption is well below that 
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of conventional office buildings and in this case shows a good fit between predicted and measured 
values. 
 

 
Figure 2-40: Offices with operable windows and sun protection, allowing natural ventilation and 

natural lighting 
 

Window control options 
The building management system (BMS) which automatically operates the top lights in the façade and 
the top lights facing the corridor, provides intermittent flush ventilation for 10 minutes in the morning 
before working hours. After that the occupants have the following control options: Windows can be 
opened completely and also tilted by hand. The top lights can be opened as well by the occupants (see 
Figure 2-41). The control device provides an additional button for intermittent ventilation. 
 

 

Figure 2-41: Control device and its functions 
 

1.5.3 Aim of the work 

The main focus is to identify energy-related occupant behavior patterns for window control and the 
usage of sun protection devices in relation to outdoor in indoor climate. Factors like season, location 
of the office or time of the day are considered as well. The objective of this analysis is to evaluate how 
much the occupants interact with their building in a manner suitable to the building concept with 
natural ventilation. 
 
1.5.4 Database characteristics 

The analyses for the room sample (see chapter 4.2) are based on a scientific monitoring in the context 
of the research program ‘SolarBau’ 2001 to 2005 (funded by the German Ministry for Economics and 
Technology BMWi) and was continued on behalf of the KfW until 2011. 
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Table 2-7: Summary of database characteristics 
Number of buildings 1 

Period of measurement Since April, 2003 with varying intensity 

Number of observed spaces with 

window sensors 

~35 

Number of observed spaces with CO2-

concentration 

5 

 Items Interval 

IF1. Climate Outdoor air temperature, humidity, wind speed, solar radiance 10 min 

IF2. Building envelope Not in database  

IF3. Building service & Systems  10 min 

IF4. Operation & Maintenance Monitoring of heating, cooling, lighting and ventilation system, 

and related energy flows 
10 min 

IF5. Indoor environmental quality Indoor operative temperature, humidity, (CO2) 10 min 

IF6. Occupants’ activities and behavior Window state (open/closed) 

Presence 

State of sun protection (open/closed) 

Usage of lighting equipment 

Event 

IF7. Social and economical aspects none  

 

1.5.5 Measurements 

The KfW building has been monitored, and data for 35 offices has been collected since April 2003. In 
the database there are mainly three types of data which can be grouped with respect to outdoor 
conditions, indoor conditions, and actions of occupants or events. Among these data, some have driver 
effect, and some others are driven. Drivers are changes in indoor and outdoor conditions while driven 
ones are defined as behavior in response to these changes. Table 2-8 summarizes the monitored data 
for all conditions as follows. 
 

Table 2-8: Monitored data 

Outdoor  Indoor  Behaviour 

Solar radiation [W/m2] 

Rain – amount [l/m2] 

Rain – event [yes/no] 

Light intensity– horizontal [lx] 

Light intensity - South [lx] 

Light intensity - East [lx] 

Light intensity - North [lx] 

Light intensity - West [lx] 

Outdoor temperature [°C] 

Wind – velocity [m/s] 

Wind – direction [°] 

CO2 content in air [ppm] 

Outdoor humidity [%rH] 

Room air temperature [°C] 

 Surface temperature [°C] 

Ceiling slab temperature [°C] 

CO2 concentration [ppm] 

 

 

 

Occupancy [0/1]* 

Window contact [0/1 ; Reed contacts]* 

Top light control [0/1 ; Reed contacts]* 

Sun protection [% of closure: 0% = open 

to 100% = closed] 

Electricity consumption [kWh] 
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*for analyzes aiming at duration in terms of daily means, data were transformed from 10 minute intervals to minutes  

 

A weather station is located on the top of the building, providing data regarding the outdoor conditions 
for all offices, such as temperature. However, the microclimate on the façades can differ, e.g. 
depending on the intensity and direction of wind. Location and types of the offices vary as described 
in the following. The office rooms can be grouped in four types; standard offices, traders’ offices, 
large offices and others with a special function in use. Traders offices are special offices, facing south, 
with before mentioned double skin façade and specially designed ceiling panels for acoustic 
performance and mechanical cooling. They are excluded from the analysis. Large offices which are 
located in four directions of the building are 2-3 times larger than standard office spaces and one of 
them is located at the corner with 2-side windows, which enable cross-ventilation. Other special 
offices include open-plan offices and meeting rooms, which differ from each other in façade type 
(single/double skin), air conditioning and differentiation in function in use. All of them are also 
excluded from this analysis. Standard offices all have the same size (~20m2), facing mostly east and 
west (one is facing south). They have one fixed and two operable windows, internal top light windows 
above the doors (to allow for night ventilation through the atrium) and sun protection elements 
(operated both manually and automatically). They are occupied by one or two persons. 
 
Room Sample 
Due to the diversity  of office usage in the building and their different it was decided to only analyze 
standard offices in terms of occupant behavior. Since the building was completed and started to be 
monitored in 2003, the starting year for the analyses was selected as 2004. The analysis period was 
determined as 3 years, from January 1st, 2004 to December 31st, 2009.  
 
In the database, besides the data of outdoor conditions, there are several data indicating changes, 
behaviors and events in the building. Among indoor conditions data, five data is available for all 
offices, which are presence of the occupant(s), window contact, top window control, room air 
temperature and use of sun protection, while others are not available for all offices, including CO2 
concentration, surface temperature, component temperature and electricity consumption. A summary 
of the variables for monitored standard offices is shown in Table 2-9. For the analyses presented in 
chapter 6, we concentrate on those parameters, which are available for all 16 rooms of the sample; 
therefore CO2-concentration and surface temperature are not included. 
 

Table 2-9: Variables for monitored standard offices 

 
 Room ID Occupancy 

Window 
control 

Top window 
control 

Room air 
temperatur

e 

CO2- 

Concentration 
Surface 

temperatur
e 

E01 •  •  •  •    

E02 •  •  •  •    

E03 •  •  •  •   •  

E04 •  •  •  •  •  •  

E05 •  •  •  •    

E06 •  •  •  •   •  

E07 •  •  •  •  •  •  

East 

E08 •  •  •  •    
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E09 •  •  •  •    

E10 •  •  •  •    

E11 •  •  •  •    

W01 •  •  •  •   •  

W02 •  •  •  •   •  

W03 •  •  •  •    

W04 •  •  •  •    

W05 •  •  •  •  •  •  

West 

W06 •  •  •  •    

 
1.5.6 Methods 

Extraction of the Data  
Monitored data was compiled with MoniSoft . Required data for the analyses have been extracted 
from the software. The data obtained were processed and implemented into SPSS 
 
Analysis Method 
A variety of statistics is applied to explore patterns of user behavior, which are described shortly 
below. 
 
a) t-tests. To explore group differences with respect to duration of window opening, season or 

orientation of the office, t-tests were applied. The t-test assesses whether the means of two groups 
are statistically different from each other [4], e.g. east versus west oriented rooms. 

b) Logistic regression. The method allows predicting the outcome of a binary dependent variable 
by modeling the probability of an event such as window opening (yes or no). The analyses are 
based on one or more predictor variables such as outdoor temperature or operative temperature 
[3]. 

c) Calculation of optimal duration of window opening. To analyze if the building concept and the 
user behavior concerning window opening fit, two approaches were chosen.  
1. Based on the paper of van Paassen, Liem & Groninger [9] the necessary respectively optimal 

ventilation duration for the offices was calculated including factors such as the opening angle, 
effective ventilation opening, height and width of the windows which results in an effective air 
change for each window. Taking into account the number of persons in the room and the 
specific fresh air volume (10 liter per person and second) the optimal duration of ventilation 
was calculated, revealing that 18 minutes of ventilation per hour would be adequate. Taking 8 
hours of work as a basis and taking into account the automated ventilation in the morning, 
7x18 minutes were taken as a basis, resulting in a maximum of 126 minutes per day. 

2. Recommendations for optimal ventilation in offices are widely spread in the context of 
building science, occupational health and safety and comfort. Looking at German websites and 
literature the recommendations for an optimal window opening on a working day vary: e.g. 3 
minutes every hour (8x3 minutes = 24 minutes) or 5 to 10 minutes every 2 hours (5x10 
minutes = 50 minutes)[12, 13, 14]. Taking into account the automated ventilation before 
working hours, the calculation for the optimal window opening duration was calculated as 
follows: 4x10 minutes (=40 minutes per day). 
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Difference between outdoor and indoor temperature. 
Regarding adequate window opening and energy consumption as well as comfort the difference 
between outdoor and indoor temperature might play an important role. For the analyses this difference 
was calculated. To separate the summer from the winter season, data for window opening behavior 
where taken for which the outdoor temperature is higher than the indoor temperature. 
 
1.5.7 Results 

Table 2-10 shows descriptive values for parameters regarding orientation of the offices and season 
based on data from 2004 to 2009. Differences of data concern daily means of indoor temperature, 
occupancy as well as opening of window and top light. As expected there are statistically significant 
differences between winter and summer mean outdoor temperatures, and no differences between east 
and west outdoor temperatures. Generally indoor temperatures are about 2 degrees Celsius higher in 
summer, and offices oriented to the east show slightly higher temperatures in summer. Mean time 
duration for occupancy is comparable between east and west offices. Generally duration of window 
and top light opening is higher in summer season, with longer duration for the top lights in comparison 
to the windows. For both seasons duration for window opening is significantly higher in west offices, 
while for the top lights it is the other way round. 
 

Table 2-10: Differences between parameters regarding orientation and season 
Ø daily mean values; 

sample: 17 rooms 

 

time periode 01.01.2004 – 31.12.2009a 

orientation east west 

season winter pc summer 

pb 

winter  pc summer 

outdoor temperature 

(°C) 
4,9 ***  21,9 = 5,1 ***  22,1 

indoor 

temperature (°C) 
21,6 ***  23,9 >>> 21,6 ***  23,5 

occupancy  

(minutes) 
456 n.s. 456 >>> 442 n.s. 445 

window opening 

(minutes) 
27 ***  261 <<< 63 ***  338 

toplight opening 

(minutes) 
40 ***  457 >> 13 ***  438 

Note. 
a. missing data for 2008; the data showed nearly no variance in sun protection usage (sun protection is predominantly 

closed in the offices), therefore this aspect is not included in the analyses. 
b. Statistical test for differences: t-test (means) with not significant n.s., p < .05*; p < .01**; p < .001***.  

Differences between east and west are indicated with n.s. =, p < .05< or >; p < .01<< or >>; p < .001<<< or >>>. 
c. Differences between winter and summer are indicated with not significant n.s., p < .05*; p < .01**; p < .001***.  

 

Influencing factors on window opening 
The following figures (Figures 2-42 to 2-49) show the percentage of open windows in relationship to 
operative temperature as well as to outdoor temperature differentiated for season and orientation. 
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Black dots represent the percentage of open windows per 10 minutes interval, bars represent the 95% 
confidence interval and the black lines show the probability of the logistic regression models. 
 
a) Winter 
Comparing Figures 2-42 and 2-45, the variability of the proportion of open windows with regard to 
outdoor temperatures is much higher for the west facing windows compared to the east facing 
windows. The occupants of the east facing rooms are opening their windows much less, the T50 
(temperature at which 50% of windows are open) is far beyond the scale for the east orientation, while 
it is 18°C for the west orientation. 
In contrast to all presented results in the literature, the opening probability related to the operative 
temperature is negative for both orientations, i.e. higher indoor temperatures are related to lower 
opening proportions. 
 

 
 

Figure 2-42: Influence of operative temperature 
on window opening in offices oriented to the east 

(winter) 

Figure 2-43 Influence of outdoor temperature on 
window opening in offices oriented to the east 

(winter) 
 

  
Figure 2-44: Influence of operative temperature Figure 2-45: Influence of outdoor temperature on 
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on window opening in offices oriented to the west 
(winter) 

window opening in offices oriented to the west 
(winter) 

 
Figure 2-43 and 2-45 show the increase of the probabability for window opening with increasing 
outdoor temperatures.  as well as slight increase for operative temperatures in offices which are 
oriented to the west. 
 
b) Summer 
The data for the summer season (Figures 2-46 to 2-49) show very similar trends for east and west 
facing offices with respect to the relationship between outdoor temperature and opening proportion. 
Besides the multinominal regression model presented here showing an increase towards higher 
temperatures, the data points show that there is a peak opening proportion in both façades around 27-
28°C with decreasing opening proportion above this point. The opening proportion compared to the 
operative temperature also shows similar trends for east and west orientation. The T50 is or both cases 
around 30°C. 
 

  
Figure 2-46: Influence of operative temperature 
on window opening in offices oriented to the east 

(summer) 

Figure 2-47: Influence of outdoor temperature on 
window opening in offices oriented to the east 

(summer) 
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Figure 2-48: Influence of operative temperature 
on window opening in offices oriented to the east 

(summer) 

Figure 2-49: Influence of outdoor temperature on 
window opening in offices oriented to the east 

(summer) 
 
In general, these results confirm that operative temperature as well as outdoor temperature have an 
influence on window opening. While in summer there are only minor differences between the 
orientation, offices oriented to the west rooms have a higher probability for window opening in winter. 
 
Fit between occupant behavior and the energy concept of the building 
a) Winter 
The results show that the occupants’ behavior regarding window opening fits for over 80% with the 
energy concept of the building in offices oriented to the east and over 90% in offices oriented to the 
west according to the calculation of an optimal opening duration of a maximum of 126 minutes per 
day (see 5.2). 
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Figure 2-50: Percentages of optimal and not-optimal window opening (max. 127 minutes) based on  

calculations according to [9 ]. 
 
When taking common recommendations (see 5.2) regarding window opening in offices, which is 
much stricter, the percentage of optimal opening duration decreases.  
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Figure 2-51: Percentages of optimal and not-optimal window opening (max. 40 minutes) based on  

common recommendations. 
 

b) Summer 
While extended opening times in winter time directly lead to a higher energy consumption, this is not 
the case in summer. However, an open window at conditions with higher outdoor temperatures than 
indoor temperatures increases indoor temperatures (which might decrease thermal comfort) and 
necessitates a higher need for nighttime ventilation in order to lower temperatures to comfortable 
values until the next morning. Such extra cooling demand could lead to a higher demand of night 
ventilation which then comes along with an additional electricity demand for fans if forced ventilation 
has to be used. 
Figure 2-52 and Figure 2-53 shows the mean values of indoor and outdoor temperature in the course 
of daily hours for the whole summer periods. Around noon, the outdoor temperatures start being above 
the indoor temperatures. 

Figure 2-52: Differences between outdoor and 
indoor temperatures  for summer working hours 

(east) and open windows 

Figure 2-53: Differences between outdoor and 
indoor temperatures for summer working hours 

(west) and open windows 
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For the following analyses topligt opening is excluded, because a distinction between the automated 
opening and the manually opening through the occupants cannot be made. In addition to looking at the 
development of outdoor and indoor temperatures the distribution of open and closed window states are 
analysed (Figure 2-54 and Figure 2-55). As a tendency, the percentage of open windows in the east 
offices is slightly lower than in the west offices. In the east offices there is small increase in the first 
working hours and a constant increase during the afternoon hours with a maximum of 40% open 
windows at the end of the working day. In the west offices there is a peak with 44% of open windows, 
decreasing percentages until noon and slightly increasing percentages during the afternoon hours and a 
decrease at the end of the working day.  
 

 
 

Figure 2-54: Distribution of open windows during the 
day (east) 

Figure 2-55: Distribution of open windows during 
the day (east) 

 
Looking at the differences between outdoor and indoor temperatures (Figure 2-56), the graph shows 
that around 35% of the windows are open, when the indoor temperature is more than 12 degrees 
Celsius higher than the outdoor temperature. This may be due to opening the window in the morning 
when the occupants start working, which would fit to the results in Figure 2-54 and 2-55. There is a 
peak of almost 40% when outdoor temperature and indoor temperature are very close. The percentage 
of open windows decreases constantly when the outdoor temperature is getting higher than the indoor 
temperature. 
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Figure 2-56: Percentage of open windows in summer regarding temperature differences in the offices 
 
1.5.8 Discussion and conclusions 

Regression analyses showed that outdoor temperatures as well as indoor temperatures turned out to be 
influencing factors on window opening which is in accordance to the literature [3], [5], [8]. This is 
similar to the effect shown by [7] for the Japanese data. The authors argue that for the Japanese data 
the reason was the availybility of an AC-unit for the occupants. Thus, the results of this data show the 
same results even without an AC-unit available for occupants.  
 
Concerning the important issue about the match of the building concept and the occupants’ behavior, 
the analyses revealed that for the KfW-building relatively long window opening times are necessary 
respectively adequate and that more than 80% of the occupants practice optimal window opening. 
However, there is potential for optimization, especially with respect to offices oriented to east. It can 
be assumed that shorter window opening duration would lead to less comfortable conditions in the 
KfW-offices, compared to often recommended window opening times for offices. A positive result is 
the fact that there is a clear tendency to keep windows closed when outdoor temperatures are higher 
than indoor temperatures. 
 
A reason for lower percentages of open windows in offices oriented to the east might be found in the 
surrounding of the building. East offices are facing a street, while the offices on the west side are 
oriented to an inner courtyard. Noise coming from the street might result in the tendency keeping the 
windows closed in offices of the east side. Additionally, along the east side there are high trees, giving 
shade in the afternoon hours compared to the inner courtyard facing the west offices. As a result, 
opening the window during the afternoon working hours might provide fresh air for the east offices, 
but higher temperatures coming from the heated courtyard without trees for the west offices. This 
might explain the tendency to keep windows closed during the afternoon hours for the west offices. 
 

outdoor temperature is 

higher than  

indoor temperature 

indoor temperature is 

higher than  

outdoor temperature 
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A variety of restrictions to the findings has to be stressed. Although the database of the monitoring 
provides a relatively long time period resulting in a considerably number of data, the interpretation of 
findings is limited when important information is not available and cannot be taken into account. This 
is for instance true for information on CO2 in the offices (not to mention VOC emission) or subjective 
ratings of the occupants concerning comfort. Despite strong efforts permission for surveys could not 
be obtained for the KfW-building. Subjective data in terms of direct feedback of the occupants are a 
relevant part when it comes to a comprehensive understanding and interpretation of behavior profiles 
based on information coming from sensors. With respect to the data higher indoor temperatures 
coincide with lower opening proportions. However, it is not clear, which is the depending and which 
the independent variable here; the assumption is that the higher operative temperatures are a result of 
less window opening and not that higher temperatures lead to less opening behavior. This has to be 
investigated in more detail.  
Another restriction is that the data does not allow a distinction between automated opening and 
manually handling of the top lights. Although the database seemed to be very large, with respect to 
specific statistical analyses the sample shrunk when comparable room samples had to be built (e.g. 
office type, orientation). 
 
In conclusion, the findings show that behavior profiles of window opening give helpful hints regarding 
the interaction between building and occupants. The behavior might be counterproductive with respect 
to the energy concept. While it is obvious that prolonged window opening in winter is linked to higher 
energy consumption, the analysis of the summer situation for a naturally ventilated building with night 
ventilation is more complex. In the summer case, prolonged window opening at high outdoor 
temperatures does not lead directly to a higher energy demand, because no cooling system exists. 
However, the increased heat gain leads to a higher demand for night ventilation, which in some cases 
is facilitated by an electrical fan. In such a way, the auxiliary energy demand can be increased. 
Nevertheless, for the building analyzed in a German climatic context, such effect was found to be 
small due to most people closing their windows when outdoor temperatures are higher than indoor 
temperatures. 
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1.6 Experience 5: Building energy consumption modeling with neural Ensembling 
approaches 

(F. Lauro) 
 
In the proposed work the aim is modeling building energy consumption. Several classical methods are 
compared to the latest Artificial Intelligence modeling technique: Artificial Neural Networks 
Ensembling (ANNE). Therefore, in this study is shown how the ANNE was built. Experimentation has 
been carried out over three months data sets coming from a real office building located in the ENEA 
‘Casaccia’ Research Centre in Rome. Experimental results show that the proposed ANNE approach 
can get a remarkable improvement with respect to the best classical method (the statistical one). 
 
1.6.1 Introduction 

Building energy consumption represents about 30%-40% of the global energy consumption [1] and it 
is the cause of about 40% of CO2 emissions [2]. Therefore, the study of building energy demand has 
got in the recent years a remarkable relevance [3] in order to improve the management of existing 
buildings and the design of the new ones. In this context, having reliable energy estimations, and thus 
accurate models, is the key for energy efficiency with remarkable economic and environmental 
advantages. 
In this scenario, at present there are three different approaches [4] for modeling energy consumption in 
buildings: Statistic Modeling (SM), Simulation Programs (SP) and Intelligent Computer Systems 
(ICS). The first one, known also as inverse modeling [5], is based on the building behavior. With this 
approach a priori hypothesis about the model structure are made and the internal model parameters are 
tuned up through statistical analysis methods and the most popular techniques are linear regression and 
multivariate analysis [4]. Therefore the structure of the models is pretty straightforward but 
sophisticate statistical analysis methods are needed. The second approach, known also as direct 
modeling [5], starts from the physical description of the building which feeds a simulation program. 
Such methods need very accurate ambient information, a highly detailed building description and 
information about the occupants behavior. All this information makes this approach computationally 
very expensive. The last approach, known also Artificial Intelligence (IA) approach [4], is based on 
Expert Systems (ES) and Artificial Neural Networks (ANN). ES are computer systems [6] that 
emulates the decision-making ability of a human expert. ES are designed to solve complex problems 
by reasoning about knowledge, like an expert, and it has a unique structure, different from traditional 
programs, which is divided into two parts, one fixed, independent of the expert system: the inference 
engine, and one variable: the knowledge base. ANN [7,8] are a mathematical model or computational 
model that is inspired by the structure and/or functional aspects of biological neural networks. An 
ANN consists of an interconnected group of artificial neurons, and it processes information using a 
connectionist approach to computation. In most cases an ANN is an adaptive system that changes its 
structure based on external or internal information that flows through the network during the learning 
phase. Modern neural networks are non-linear statistical data modeling tools. They are usually used to 
model complex relationships between inputs and outputs or to find patterns in data. 
The application of these methods depends on their own characteristics [4]. SM is mainly used in 
energy modeling of clusters of buildings [9,10] or in the design of areas where different end users are 
present. SP is mostly applied as energy estimation tools of single buildings [11], in design and retrofit 
interventions. ICS are somehow in between the two because can be applied to single as well as 
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building clusters [12, 13], moreover ICS are very effective in diagnosis, automation, control and 
management optimization. 
Therefore, in this paper is described a novel ICS for energy consumption modeling aimed at making 
diagnosis systems and controlling a complex building. 
 
1.6.2 Methods 

In this paragraph the modeling techniques compared in the experimentation are shortly described. 
 
Naïve Model 
In order to perform a meaningful comparison for the forecasting, a naive model should be introduced 
in order to quantify the improvement given by more intelligent and complex forecasting techniques. 
For seasonal data a naïve model might be defined as: 
 
   xt = xt-s                                                                  (1) 
with S the appropriate seasonality period. This model gives a prediction at time t presenting the value 
observed exactly a period of S steps before. For this work, the value of S is 24 * 7 = 168 which 
corresponds to a week, given that the sampling considered is hourly. 
 
1.6.3 Statistical Model 

One the simplest and most widely used models is to build an average weekly distribution of the 
consumption sampled hourly. Thus, from the data for each day the average consumption is computed 
hour by hour in order to get an average distribution made of 24 * 7 = 168 points. 
 
Artificial Neural Networks 
Artificial Neural Networks (ANN) [7,8] are computational models which try to simulate some 
properties of biological neural networks in order to solve complex modeling problems of non-linear 
systems. An ANN is an interconnected group of artificial neurons (called also nodes) that uses a 
mathematical or computational model for information processing based on a connectionistic approach 
to computation. In more practical terms ANN are non-linear data modeling or decision making tools 
which can be used to model complex relationships between inputs and outputs or to find patterns in 
data. ANN are referred also as black-box or data-driven models and they are mainly used when 
analytical or transparent models cannot be applied. Building such models needs several stages as input 
analysis and training through algorithms which minimize the error between the real values to be 
modeled and the ANN output. ANN demonstrated their effectiveness in modeling many real-world 
applications. 
Once modeling an ANN model, we must take into account three basic components. First, the synapses 
of the biological neuron are modeled as weights. Let’s remember that the synapse of the biological 
neuron is the one which interconnects the neural network and gives the strength of the connection. For 
an artificial neuron, the weight is a number, and represents the synapse. A negative weight reflects an 
inhibitory connection, while positive values designate excitatory connections. The following 
components of the model represent the actual activity of the neuron cell. All inputs are summed 
altogether and modified by the weights. This activity is referred as a linear combination. Finally, an 
activation function controls the amplitude of the output. Mathematically, this process is described in 
Figure 2-57. 
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Figure 2-57: Artificial neuron model 

 
From this model the activity of the neuron can be shown to be: 
y=fa(Σwixi - θ)                                                      (3) 
where θ is a threshold called BIAS (Basic Input Activation System) which identifies the sensitivity of 
the neuron to respond to the external inputs. The most common function used to model fa are the 
hyperbolic tangent, the sigmoid and the linear function. 
Therefore each unit performs a relatively simple job: receive input from neighbors or external sources 
and use this to compute an output signal which is propagated to other units. Apart from this processing, 
a second task is the adjustment of the weights. The system is inherently parallel in the sense that many 
units can carry out their computations at the same time. Within neural systems it is useful to 
distinguish three types of units: input units which receive data from outside the neural network, output 
units which send data out of the neural network, and hidden units whose input and output signals 
remain within the network. 
The way units are connected defines the network topology or architecture. In the past years many of 
them have been studied and the most widely used is the feed-forward one. In this network structure 
neurons are grouped into layers. There exists at least two layers, the input and the output one, which 
are those gathering the corresponding input and output variables. This basic structure is also known as 
perceptron [14]. Moreover, in order to let the model cope with non-linear problems, it is possible to 
add one or more intermediate layers, known as hidden layers. These models are also known as multi-
layer perceptrons (MLP)[15]. 
The flow of data from input to output units is strictly in one direction (forward). The data processing 
can extend over multiple (layers of) units, but no feedback connections are present, that is, connections 
extending from outputs of units to inputs of units in the same layer or previous layers. 

 
Figure 2-58: Feed-forward neural network topology 

 

A neural network has to be configured such that the application of a set of inputs produces (either 
'direct' or via a relaxation process) the desired set of outputs. Various methods to set the strengths of 
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the connections exist but the most used way is to 'train' the neural network by feeding it teaching 
patterns and letting it change its weights according to some learning rule. 
Several different training algorithms for feedforward networks use the gradient of the performance 
function to determine how to iteratively adjust the weights to minimize performance. The gradient is 
determined using a technique called backpropagation [16, 17], which involves performing 
computations backward through the network. The simplest implementation of backpropagation 
learning updates the network weights and biases in the direction in which the performance function 
decreases most rapidly, the negative of the gradient. One iteration of this algorithm can be written: 
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is the current gradient (kE is the current error 

between the network outputs and the target outputs), and αk is the learning rate. 
There are two different ways in which this gradient descent algorithm can be implemented: 
incremental mode and batch mode. In incremental mode, the gradient is computed and the weights are 
updated after each input is applied to the network. In batch mode, all the inputs are applied to the 
network before the weights are updated. 
The backpropagation training algorithms are often too slow for practical problems. The Levenberg – 
Marquardt is a high – performance algorithm that can converge from ten to one hundred times faster  
than the backpropagation algorithm discussed previously. The Levenberg – Marquardt algorithm [18, 
19] is an approximation to Newton’s method: it was designed to approach second-order training speed 
without having to compute the Hessian matrix. When the performance function has the form of a sum 
of squares (as is typical in training feedforward networks), then the Hessian matrix can be 
approximated as: 

TH J J=  
and the gradient can be computed as: 

T
kJ E
 where J is the Jacobian matrix that contains first derivatives of the network errors with respect to the 

weights and biases, and Ek is a vector of network errors. The Jacobian matrix can be computed through 
a standard backpropagation technique that is much less complex than computing the Hessian matrix. 
The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the following 
Newton-like update: 
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When the scalar µ is zero, this is just Newton’s method, using the approximate Hessian matrix. When 
µ is large, this becomes gradient descent with a small step size. Newton’s method is faster and more 
accurate near an error minimum, so the aim is to shift toward Newton’s method as quickly as possible. 
Thus, µ is decreased after each successful step (reduction in performance function) and is increased 
only when a tentative step would increase the performance function. In this way, the performance 
function is always reduced at each iteration of the algorithm. 
 
Ensembling Methods 
The term ‘ensemble’ describes a group of learning machines that work together on the same task, in 
the case of ANN they are trained on some data, run together and their outputs are combined as a single 
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one. The goal is obtain better predictive performances than performances that could be obtained from 
any of the constituent models. 
 

 
Figure 2-59: Ensembling 

 

In the last years several ensembling methods have been carried out [20, 21, 22]. The ensemble methods 
can be divided into two categories: generative and non generative. 
The non generative methods seek to combine in the best way the outputs of the machines. The first one, also 
known as Basic Ensemble Method (BEM), is the simplest way to combine M neural networks as an 
arithmetic mean of their outputs yi. This method can improve the global performance [23, 24] although 
it does not takes into account that some models can be more accurate than others. This method has the 
advantage to be very easy to apply. A direct BEM extension is the Generalised Ensemble Method 
(GEM) [23, 24] in which the outputs of the single models are combined in a weighted average where 
the weights have to be properly set, sometimes after an expensive tuning process. 
The generative methods spawn new sets of learner from the original one, so as to create differences 
between them that can improve the overall performance. For example, Bagging and Adaboost 
generative methods use the bootstrapping resampling technique [25] that allows to generate different 
sets for machines training. In Bagging (Bootstrap AGGregatING) [26], the bootstrapping technique 
on a database consists in the extraction with replacement of its elements to create several new 
training set. The probability of extraction of each example is equal to that of the other. The basic 
algorithm consists in creating models for each training set and then in combining the various 
estimates on the test set through an average operation (Figure 2-60). The name Adaboost [27, 28] 
derives from the fact that the ensemble provides the bootstrap adaptive: it possesses the ability to 
adapt to the difficulty characteristics of the training set. The central idea is to extract a random number 
of examples from the training set, then assign a higher probability of extraction for the examples more 
difficult to learn. Initially, a first machine is trained with a training set constructed by random 
selection with equal probability for all examples. After that, the extraction probabilities are updated 
for the next training set by increasing probability of  the original set worst learned examples. It 
generates a new training set and a new machine is trained and so on. 

 
Figure 2-60: Bagging algorithm block diagram 
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1.6.4 Experimentation 

In this paragraph the methods presented in the previous section are tested and compared. 
The test case has concerned the energy consumption modeling of a real office building (building 
‘C59’) located in the ENEA ‘Casaccia’ Research Centre (Rome, Italy). Modeling refers to three energy 

consumption types of the building: lighting, electromotive force (emf) and conditioning. Experimentation 
has been carried out over three different data set, each one made approximately of 3 months of hourly 
measurement (from September to November 2009 for lighting and emf, from June to August 2009 for 
conditioning). Each sample consists of measurements like month, day of the month (1-31), day of the 
week (1-7), time, working day (true/false), occupancy, solar radiation, outdoor temperature, sunset 
time, used as inputs of the neural models, and consumption, used as the target (output). 
The data sets have been split in two parts : training (approximately 10 weeks) and validation 
(approximately 3 weeks, one for each month) and the reported results refer to the last one. 
The ANN applied for the data analysis are feed-forward MLP with several inputs dependent on the 
particular type of consumption (Tab. 15), 1 hidden layer consisting of 10 neurons, 1 output (lighting, 
emf or conditioning consumption), hyperbolic tangent as activation function for the hidden neurons 
and linear for the output. The artificial neural networks ensembling is built according to BEM. 
 

Table 2-11: Best input combinations for each consumption type 
 NUMBER OF INPUTS INPUT VARIABLES 

LIGHTING 7 
Month, day of month, day of the week, time, occupancy, global 

radiation, outdoor temperature (working days only) 

EMF 11 

Month, day of month, day of the week, time, working day, 

occupancy, global radiation, diffuse radiation, direct radiation, 

outdoor temperature, sunset time 

CONDITIONING 9 
Month, day of month, day of the week, time, occupancy, global 

radiation, diffuse radiation, direct radiation, outdoor temperature 

 
Training has been performed with MATLAB (ver. R2010a) through the Levenberg-Marquardt 
algorithm stopping after 1000 iterations. The reported results are averaged over 10 different runs (with 
standard deviation in brackets) and the ensemble is therefore made by the same 10 models. 
Performance has been measured according to the Mean Absolute Error (MAE) and the Maximum 
Absolute Error (MAX) (Tab. 16): 
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where yi is the real output, ̂
iy  is the estimated output and N is the data set real values size. 

Table 2-12: Experimental results (testing). 
  Naive Statistical ANN BEM 

MAE (kW) 2.95 0.97 1.22 (±0.10) 0.95 
LIGHTING 

MAX (kW) 4.90 4.74 5.53 4.02 

MAE (kW) 1.51 1.38 1.01 (±0.21) 0.68 
EMF 

MAX (kW) 12.40 7.50 8.15 4.49 
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MAE (kW) 4.76 4.06 3.45 (±0.34) 2.95 
CONDITIONING 

MAX (kW) 14.84 13.00 15.55 8.69 

 
Experimental results show that lighting and emf consumptions are more easily modeled than the 
conditioning one (Figure 2-61, 2-62, 2-63): for this energy consumption type, further data, in addition 
to those available, are necessary (i.e., building internal temperature). 
We can see that the proposed method (BEM) clearly outperforms all the others. The reason for that is 
that the proposed approach is capable to provide reliable estimations when out of standard conditions 
because it takes into account several input features (as occupancy) which affect the energy 
consumptions. 
Moreover, it is interesting to point out that statistical modeling performs pretty well, even better than 
the single neural models (ANN). These get a remarkable accuracy, and an error slightly lower than the 
statistical model, only as an ensemble. 
The accuracy achieved by the proposed model is such that it can be applied for intelligent monitoring, 
diagnostic systems and optimal control in order to reduce energy consumptions. 
 

 
Figure 2-61: Lighting modeling comparison (testing results). 

 



135 
 
 

 
Figure 2-62: Emf modeling comparison (testing results). 

 

 
Figure 2-63: Conditioning modeling comparison (testing results). 

 
1.6.5 Conclusions 

In this work we proposed a new approach aimed at modeling building lighting, emf and conditioning 
energy consumptions. The basic idea is to build a new model based on neural networks ensembling. 
Experimentation has been carried out over three months data sets coming from a real office building 
located in the ENEA ‘Casaccia’ Research Centre and experimental results show that the proposed 
method can get a remarkable improvement with respect to the best classical method. 
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The reason for that is that the neural ensembling model is capable to provide reliable estimations when 
out of standard conditions because it takes into account several input features (as occupancy) which 
affect the energy consumptions. 
 
The accuracy of the proposed model is such that it can be applied for intelligent monitoring, diagnostic 
systems and optimal control in order to reduce energy consumptions. 
As future work we are going to apply the same approach to model other building energy consumptions 
as thermal flows. Moreover, we are going to try applying more sophisticated ensembling methods and 
also try neural - statistical hybrid models. 
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1.7 Experience 6: Office Buildings of municipality of Livorno Ferraris 

(Vincenzo Corrado et al. – Polytechnic of Turin ) 
 
1.7.1 Subject of the work 

The subject of work is the analysis of the energy and environmental performance of a small office 
building in Italy, having a gross floor area of 1100 m2 and a net floor area of 750 m2. According to the 
Italian Building Energy Code the building is located in the climatic zone “E” (HDD between 2100 and 
3000). 
 
1.7.2 Aim of the work 

In order to improve the energy efficiency in existing buildings and to design appropriate energy-saving 
measures, it is important to split the effect of the building features (envelope, energy systems) and the 
effect of the human behavior factors (heating/ventilating, system control). 
The work is based on a survey on users behavior, on a long-term energy and environmental 
monitoring, on the application of inverse models based on linear regression and on the run of a tailored 
numerical simulations. 
 
1.7.3 Database characteristics  

The following building features are fully described: 
• geometry (surfaces, orientation, external context); 
• envelope (layers, material properties, windows); 
• building services typologies and efficiencies (DHW, space heating, ventilation, lighting, 

common appliances). 
Occupancy schedules and equipment use are fully described. The boiler energy supply has been 
continuously monitored on a two-year period by means of a direct method (supply and return 
temperatures, and water flow rate). Also an indirect method has been used to evaluate water flow rates. 
The following indoor and outdoor environmental quantities were also monitored (with a 15 minutes 
time step): 

• air temperature; 
• air relative humidity; 
• CO2 concentration. 

The building has been simulated through a numerical simulation code (EnergyPlus), using the real 
occupancy schedules and real environmental profiles (tailored energy rating). 
 
1.7.4 Building data 

The case study is public office “Palazzo Ciocca”, built in 1860, situated in Livorno Ferraris (VC), Italy.  
Livorno Ferraris is a town located in North-Western Italy in Piedmont region. the number of degree 
days is 2549 °C⋅d.  
The building floor has an area of 130 m2 with a ceiling height of 3.5 m. The simulation and the 
monitoring were performed at the second floor. 
The building structure is in bearing solid brick masonry. On the floor below the monitored zone are 
heated rooms (through autonomous heating systems) and also used for offices and similar, while locals 
on the upper floor are used for archives and use the heating system is generally off. 
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Figure 2-64: Satellite view Figure 2-65: Palazzo Ciocca – portion subject 

to monitoring 
 

 
Figure 2-66: Plan of the 2nd floor above ground 

Envelope 
The thermo physical properties of building envelope layers are presented in Table 2-13. The glazed 
building façade represents 20% of the total envelope area. Windows are 4/6/4 uncoated and air filled 
with an U-value of 3.15 W/(m2K) and a SHGC of 0.74. Windows are shaded from outside by blinds 
with reflectance (0.2) and transmittance (0.7). 

Table 2-13:  Envelope compositions and thermo physical properties of materials 
 Layers (outer/inner) Thickness 

(cm) 

Density 

(kg/m3) 

Specific heat 

(J/kg.K) 

Thermal 

conductivity 

(W/m.K) 

External wall Brick 72 1800 840 0.72 

Flooring screed 5 1200 1000 0.41 

Brick 20 1700 840 0.56 

Ceiling/floor 

Concrete 20 2000 1000 1.13 
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Heating system 
The heating system is centralized type equipped with a cast iron heat generator of which the main 
characteristics are provided below: 

• Type: non-condensing 
• Rated power at firebox: 33,72 kW 
• Output power: 29,09 kW 
• Efficiency at full power at firebox: 91% 
• Feed: natural gas 
• Burner: atmospheric 
• Year of installation: 1992 
• Condition: Intact insulation coat. 

The heating distribution system is zone type (floor collector) and the pipes are embedded in the floor. 
The circulation pump has the following features: 
 

Table 2-14:  Heating system features 
220 V 

Power supply 
0.66/0.5  A 

P1 (max) 132/99 W 

P2 (min) 49/22 W 

Giri  2000/2400 m-1 

 
A programmable control (timer) is installed (Figure 2-67) and a zone thermostat (Figure 2-68) is 
placed in room 9, closet o the “I” measurement point.  
 

 

 
Figure 2-67: Timer Figure 2-68: Zone thermostat 

 
The terminals are cast iron radiators in columns. All the radiators except i, m, p, q and r are cavities 
below window sills. In Figure 2-69 the position of the radiators id identified. 
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Figure 2-69: Position of the radiators 

 
Table 2-15: Characteristics of the radiators in the monitored rooms 

 
Id Elements Columns 

Height 

[mm] 

a 12 4 600 

b 10 4 600 

c 6 4 600 

d 14 4 600 

e 8 4 600 

f 8 4 600 

g 10 4 600 

h 10 4 600 

i 3 3 840 

l 7 4 600 

m 6 3 840 

n 13 4 600 

o 13 4 600 

p 10 3 840 

q 10 3 840 

 

r 4 3 840 
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Building use 
The building office is occupied from 9 to 18 h during weekdays. The internal heat sources are 15 
W/m2 and the infiltration is fixed to 0.7 h-1. A natural ventilation rate is scheduled with a nominal rate 
of 3 h-1. The shading device is scheduled with a solar set-point of 120 W/m2. 
 
Monitoring 
The following quantities were monitored: 

• external temperature 
• external relative humidity 
• external CO2 concentration  
• internal temperature 
• internal relative humidity 
• internal CO2 concentration 
• thermal energy delivered to the system 

 
The environmental monitoring has been carried out both by means of wireless sensors and by means 
of traditional data-loggers. 
 

 
Figure 2-70: Identification of the rooms 

 
Hereafter are reported, for each room, the geometrical features, the occupancy schedule and the type 
of climatic control. 
 

Table 2-16: Occupancy characteristics of the monitored rooms 
Room Occupancy schedule Equipment Notes 
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1 
1 person from Monday 
to Friday – time 8-14 
and 15-18 

1 PC, 
1 printer 

 

2 
2 persons from Monday 
to Friday – time 8-14 
and 15-18 

2 PCs, 
2 printers 

The doors of separation of room 2 from room 3 are 
open for most of the occupancy period  

3 Occasionally occupied 2 printers 
The doors of separation of room 2 from room 3 are 
open for most of the occupancy period 

4 Occasionally occupied No equipment 
The doors of separation of room 4 from room 9 are 
open for most of the occupancy period 

5 
2 persons from Monday 
to Friday – time 8-14 
and 15-18 

2 PCs, 
2 printers 

 

6 See notes 

1 small refrigerator, 
1 microwave oven, 
1 automatic bar 
machine, 
1 distributor of 
beverages, 
1 boiler for DHW 
production 

Bathrooms and service room 

7 
1 person from Monday 
to Friday – time 8-14 
and 15-18 

2 PCs, 
2 printers 

 

8 Occasionally occupied No equipment  

 
1.7.5 Method/Methods applied for the data analysis  

The method for data analysis includes two steps: 
• simplified analysis based on  a simplified inverse model; 
• calibration of the numerical detailed model.  

The first step applies linear regression based on weekly and daily data for determining correlations 
between heating energy need and average external temperature. Such regression allows to determine 
the total heat loss coefficient and the influence of solar and internal heat gains. 
By knowing solar radiation data and occupancy schedules, it is also possible to split the effects of solar 
gains and internal gains. 
Besides, the analysis of internal temperature drop due to thermostat set-back or switch-off of the 
heating plant allows to determine the effective thermal capacity of the building.  
In the second step the numerical model has been calibrated by comparing both expected energy need 
and the real measured consumption, and the expected and real aggregated parameters springing up 
from the first analysis. 
The aim is to built a data-driven model and to evaluate energy saving. The construction of inverse 
models is based on the following assumptions: 

• Dependent variables: energy consumption for heating and cooling, obtained with the detailed 
simulation tool EnergyPlus; 

• Independent variables: external air temperature and sol-air temperature. 
 
The procedure of inverse model construction is based on the least-squares regression method (Kissock 
et al. 2003). This approach estimates model coefficients, β, that minimize the sum of the squared error, 
E, between predicted, Ŷ , and actual observations, Y, following this equation: 
Y=X·β + Ε                                                                (1) 
The root mean squared error, RMSE,  is to be minimized, computed as: 
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where n is the number of data observations, p is the number of regression coefficients. The root mean 
squared error of the model is a measure of the scatter of the data around the model. 
The second task is to evaluate the energy savings following the realization of several retrofit actions. 
In the case-study, data driven approach is carried out with simulated data because as measurement 
operation is still on progress. 
The method is based on the following steps: 

• Assessment of energy consumption for heating and cooling in day time intervals during the 
pre and post retrofit periods using the dynamic tool EnergyPlus; 

• Construction of data-driven models; 
• Calculation of the energy saving for each retrofit action. 

 
Simulation 
The energy evaluation of the building is carried out with EnergyPlus dynamic tool for six different 
combinations of climate data and building data characteristics: (i) pre-retrofit simulation performed 
with climate and building data in the pre-retrofit period (ii-v) post-retrofit simulations with climate and 
building data in the post-retrofit period and (vi) final simulation with post-retrofit climate data and 
pre-retrofit building data. The pre and post-retrofit climatic data have been modelled with two 
different cities in the same climatic zone. 
 

Table 2-17: Description of Retrofitting actions 
Retrofitting actions Energy aspect Load characterization Force driven 

Infiltration reduction 

 

Qpre-retro= 0.7 h-1 

Qpost-retro= 0.2  h-1 

Heat ventilation losses Instantaneous load External temperature 

Decreasing window solar 

transmittance 

 

SHGCpre-retro = 0.74 

SHGCpost-retro = 0.39 

Heat sources  Delay load Solar irradiation 

Adding external envelope insulation 

 

Uoppre-retro = 0.89 W/m2K 

Uoppost-retro = 0.28 W/m2K 

Heat transmission losses Delay load 
External temperature and 

solar irradiation 

Double window with argon gas filling 

 

Uwpre-retro = 3.15 W/m2K 

Uwpost-retro = 2.55 W/m2K 

Heat transmission losses 
Quasi-instantaneous 

load 
External temperature 

 
1.7.6 Results 

A better understanding of the building heat balance and of the influence of users have been achieved 
by combining an inverse analysis based on energy and environmental monitoring and a calibrated 
direct tailored modeling. 
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A few aggregated parameters have been defined to describe the building thermal behavior: global heat 
transfer coefficient, thermal capacity, solar effective area, user parameters.  
Table 2-18 shows the regressions coefficients and uncertainty parameters of the data driven model 
using the (2-P), (3-P), (4-P) and (5-P) models for the heating and cooling mode and respectively using 
sol-air temperature and air temperature as independent variables. Generally speaking, the squared 
correlation coefficient, R2, has a good value (more than 0.6). It can be noted that the dry air 
temperature is more appropriate than the sol-air temperature in the case of cooling data driven model. 
At the opposite, the sol-air temperature is more suitable during the heating mode. Besides, table IV 
illustrates that the balance temperature Tbal has a low value: in the heating mode around 12.5 °C and in 
the cooling mode around 20°C, this is due to the fact the conditioning system runs in intermittent 
mode. 
 

Table 2-18: Uncertainty parameters and regression coefficients for models analyzed 
Independent 

variable 
 Model Uncertainty Parameters Regression coefficients 

�1 �2 �3 �4 �5 

  

 
R2 RMSE CV-RMSE 

[kWh] [kWh/°C]  [°C] [kWh] 

2P 0.646 10.839 42.71% -167.88 4.15    

3PC 0.648 10.809 42.60% 3.32 4.30 23.76 [°C]   

C
oo

lin
g 

4P 0.657 10.758 42.39% 34.01 4.89 2.39 [kWh/°C] 30.14  

2P 0.678 16.201 32.83% 160.65 -4.40    

3PH 0.701 15.592 31.60% 6.53 -5.15 15.56 [°C]   

H
e

a
tin

g 

4P 0.702 15.65 31.72% 14.22 -5.31 -1.33 [kWh/°C] 13.78  S
ol

-a
ir 

te
m

pe
ra

tu
re

 

 5P 0.744 4.061 34.60% 4.76 -5.31 3.87 [kWh/°C] 15.56 23.33 

2P 0.784 8.473 33.39% -224.41 6.29    

3PC 0.829 7.537 29.71% 5.09 7.88 19.71 [°C]   

C
oo

lin
g 

4P 0.83 7.566 29.82% 6.72 1.07 7.87 [kWh/°C] 19.91  

2P 0.634 17.263 34.99% 173.73 -5.44    

3PH 0.642 17.067 34.59% 5.71 -5.80 12.56 [°C]   

H
e

a
tin

g 

4P 0.642 17.146 34.75% 7.51 -5.81 -0.65 [kWh/°C] 12.22  

D
ry

-b
ul

b 
te

m
pe

ra
tu

re
 

 5P 0.733 14.372 35.36% 3.21 -5.79 7.19 [kWh/°C] 13.01 19.05 

 
In figures 2-71, 2-72, 2-73 the building energy needs for heating and for cooling are presented as a 
function of the driving forces T and Tsa as well as the fit by baseline equation for the regression model 
analyzed. 
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Figure 2-71: Left: Building cooling  energy need as a function of dry-bulb air temperature and fit by 
baseline equation (3Pc) Right: Simulated vs predicted  building cooling energy need over the pre-

retrofit period. 
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Figure 2-72: Left: Building heating energy need as a function of soil-air temperature and fit by 

baseline equation (3Ph) Right: Simulated vs predicted building heating energy need over the pre-
retrofit period. 
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Figure 2-73: Left: Building annual  energy need as a function of sol-air temperature and fit by 

baseline equation (5P) Right: Simulated vs predicted  building annual energy need over the pre-
retrofit period. 

 



147 
 
 

 
1.7.7 References 

 
[1] Capozzoli A.; Corrado V.; Mechri H.E. (2009). A critical review on forward and data-driven 

methods for building energy analysis. In: Systems, Energy and Built Environment. Towards a 
Sustainable Comfort. Proceedings of the 47th AICARR International Conference, Tivoli, 8-9 
October 2009, Milano: AICARR, p. 885-896, ISBN 978-88-95620-53-4. 

[2] Claridge D. (1998). A perspective on methods for analysis of measured energy data from 
commercial buildings. ASME Journal of Solar Energy Engineering. Vol. 120, pp. 150-155. 

[3] Corrado V.; Mechri H.E. (2009). Uncertainty and Sensitivity Analysis for Building Energy 
Rating.  Journal of Building Physics, vol. 33, no. 2, p. 125-156, ISSN: 1744-2591, October 2009, 
doi: 10.1177/1744259109104884. 

[4] Corrado V.; Mechri H.E. (2009). Uncertainty analysis on simplified and detailed calculation 
models for heating and cooling energy assessment of buildings. In: BAYAZIT, MANIOĞLU, 
ORAL & YILMAZ. Energy Efficiency and New Approaches. Proceedings of the 4th 
International Building Physics Conference, Istanbul, 15-18 Giugno 2009, ISTANBUL: Istanbul 
Technical University (Turkey), p. 1007-1013, ISBN: 978-975-561-350-5. 

[5] Kissock J.; Kelly; Haberl Jeff S.; Claridge David E. (2003). Inverse Modeling Toolkit: Numerical 
Algorithms, KC-03-2-1 (RP-1050). 

[6] Tiberiu C.; Virgone J., Blanco E. 2008. Development and validation of regression models to 
predict monthly heating demand for residential buildings. Energy and Buildings Vol 40, pp. 182 

 
 
 



148 
 
 

1.8 Experience 7: Evaluation of a Low Energy Multifamily building in Vienna, Austria 
(Synthetic contribution) 

(Thomas Bednar, Kerstin Seif, Naomi Morishita. Wien University of Technology) 
 
 
1.8.1 Subject of the Work 

Three Austrian apartment buildings (Kammelweg D, Utendorfergasse, Dreherstraße) studied at a high 
level of detail, Level C, complex, according to the “3 Level Database” definition.  
 
1.8.2 Aim of the Work 

The aims of this research are: 
• to determine an accurate profile of the current typical Austrian household considering direct 

and indirect influences on user behavior and energy demand; 
• to verify if the profile of a single average household is satisfactorily accurate to represent the 

energy-related behavior of the Austrian population; 
• to see how energy-related user behavior has changed over time; 
• to establish what the most essential influencers are on energy-related user behavior. 

 
1.8.3 Database Characteristics 

Two groups of data are to be generated for the database: building geometries and qualities and 
occupancies and lifestyles.  
The database contains the results of a regression analysis of key influencers of energy-related user 
behaviors. The parameters representing the range of possible user behaviors are selected for the 
database using the results of previous research into the behavior trends, and five building energy 
efficiency groups:  

• Existing buildings  
• Low Energy buildings 
• Low Energy buildings with renewable energy systems (PV panels, solar hot water panels, etc.) 
• Passive House buildings 
• Plus Energy buildings 

 
The case study apartment buildings located in different parts of Vienna are used as the basis for the 
scenario combinations. The apartment buildings are analyzed in detail at Level C, complex. 
The interplay of both groups of parameters are combined using random regression analyses to form a 
library of potential combinations of building standard, occupancy, and lifestyle.  
 
1.8.4 Data Analysis Methodology 

The first group of data will be comprised of the building performance characteristics of five building 
efficiencies as listed above. 
The second group of data will be based upon the literature research, where parameters influencing 
energy-related behaviors will be identified and sub-categorized. The dominant occupancy schedules 
will also be included in this portion of the database.  
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The two data groups will be combined using regression analysis to establish a series of user profiles, 
and compared to determine if a dominant profile results. 
The dominant parameters, as determined by the regression analyses, will then be used as the input 
parameters for whole building simulation models of the apartment buildings.  
 
1.8.5 Expected Results 

The dominant characteristics of energy-related user behavior will be graphically compared to ascertain 
if a single profile dominates each building typology. If a consistent profile dominates all typologies, 
this profile can be defined as an accurate user profile for the typical Austrian household to be used as 
the standard profile for energy certificate calculations and whole building simulations.  
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1.9 Experience 8: Development of statistical analysis for total energy use in individual 
buildings (Synthetic contribution) 

(Thomas Bednar, Kerstin Seif, Naomi Morishita. Wien University of Technology) 
 
 
1.9.1 Subject of the Work 

Eight Austrian single family homes between 100 m² and 220 m² studied at a high level of detail, Level 
C, complex, according to the “3 Level Database” definition.  
 
1.9.2 Aim of the Work 

The aims of this research are, 
to determine an accurate profile of the current typical Austrian household considering direct and 
indirect influences on user behavior and energy demand; 
to verify if the profile of a single average household is satisfactorily accurate to represent the energy-
related behavior of the Austrian population; 
to see how energy-related user behavior has changed over time; 
to establish what the most essential influencers are on energy-related user behavior. 
 
1.9.3 Database Characteristics 

Two groups of data are to be generated for the database:  
• building geometries and qualities  
• occupancies and lifestyles.  

 
The database contains the results of a regression analysis of key influencers of energy-related user 
behaviours. The parameters representing the range of possible user behaviors are selected for the 
database using the results of previous research into the behavior trends, and five building energy 
efficiency groups:  

• Existing buildings  
• Low Energy buildings 
• Low Energy buildings with renewable energy systems (PV panels, solar hot water panels, etc.) 
• Passive House buildings 
• Plus Energy buildings 

 
Eight case study single family homes located in different parts of Austria are used as the basis for the 
scenario combinations. The homes are analyzed in detail at Level C, complex. 
The interplay of both groups of parameters are combined using random regression analyses to form a 
library of potential combinations of building standard, occupancy, and lifestyle.  
 
1.9.4 Data Analysis Methodology 

The first group of data will be comprised of the building performance characteristics of five building 
efficiencies as listed above. 
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The second group of data will be based upon the literature research, where parameters influencing 
energy-related behaviors will be identified and sub-categorized. The dominant occupancy schedules 
will also be included in this portion of the database.  
The two data groups will be combined using regression analysis to establish a series of user profiles, 
and compared to determine if a dominant profile results. 
The dominant parameters, as determined by the regression analyses, will then be used as the input 
parameters for whole building simulation models of the eight homes.  
 
1.9.5 Expected Results 

The dominant characteristics of energy-related user behavior will be graphically compared to ascertain 
if a single profile dominates each building construction typology. If a consistent profile dominates all 
typologies, this profile can be defined as an accurate user profile for the typical Austrian household to 
be used as the standard profile for energy certificate calculations and whole building simulations.  
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1.10 Experience 9: Development of statistical analysis for total energy use in small office 
buildings (Synthetic contribution) 

(Thomas Bednar, Kerstin Seif, Naomi Morishita. Wien University of Technology) 
 
1.10.1 Subject of the Work 

Two small Austrian office buildings (Getreidemarkt, BH Melk) studied at a high level of detail, Level 
C, complex, according to the “3 Level Database” definition.  
 
1.10.2 Aim of the Work 

The aims of this research are, 
to determine an accurate profile of the current typical Austrian office worker considering direct and 
indirect influences on user behavior and energy demand; 
to verify if the profile of a single average office is satisfactorily accurate to represent the energy-
related behavior of the Austrian population; 
to see how energy-related user behavior has changed over time; 
to establish what the most essential influencers are on energy-related user behavior. 
 
1.10.3 Database Characteristics 

Two groups of data are to be generated for the database: building geometries and qualities and users 
and lifestyles. 
 
The database contains the results of a regression analysis of key influencers of energy-related user 
behaviours. The parameters representing the range of possible user behaviors are selected for the 
database using the results of previous research into the behavior trends, and five building energy 
efficiency groups:  

• Existing buildings  
• Low Energy buildings 
• Low Energy buildings with renewable energy systems (PV panels, solar hot water panels, etc.) 
• Passive House buildings 
• Plus Energy buildings 

 
Two case study office buildings located in different parts of Austria are used as the basis for the 
scenario combinations. The buildings are analysed in detail at Level C, complex. 
The interplay of both groups of parameters are combined using random regression analyses to form a 
library of potential combinations of building standard, occupancy, and lifestyle.  
 
1.10.4 Data Analysis Methodology 

The first group of data will be comprised of the building performance characteristics of five building 
efficiencies as listed above. 
The second group of data will be based upon the literature research, where parameters influencing 
energy-related behaviours will be identified and sub-categorized. The dominant occupancy schedules 
will also be included in this portion of the database.  
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The two data groups will be combined using regression analysis to establish a series of user profiles, 
and compared to determine if a dominant profile results. 
 
The dominant parameters, as determined by the regression analyses, will then be used as the input 
parameters for whole building simulation models.  
 
1.10.5 Expected Results 

The dominant characteristics of energy-related user behavior will be graphically compared to ascertain 
if a single profile dominates each building typology. If a consistent profile dominates all typologies, 
this profile can be defined as an accurate user profile for the typical Austrian office building to be used 
as the standard profile for energy certificate calculations and whole building simulations.  
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2. Statistical analysis of large building stock 

2.1 Introduction 

Statistical analysis of a large buildings stock represent methods used to estimate the energy 
consumption and/or the peak demand of a building at a level of detail that is suited to apply to a 
number of buildings that is statistical significant (usually more than tens of buildings). The principle of 
the approach is to project the experimental data on a basis.  The methods depend on the type of basis: 
its dimension and its components. 
One type of projection is on categories (Experiences 1, 2, 3, 4, 5, 6). For example, Hu and Yoshino 
(Experience 4) consider the climate zones, the area of the building, the type of the heating system and 
its operation, as well as the number of people in the household and their annual income. In another 
study, Yoshino  (Experience 5) considers, besides the categories mentioned before, the weather, 
indicated by the cooling and heating degree days and the indoor temperature during the heating and 
the cooling season. The model resultes are regression models in different variants:  multi regression, 
neural networks, quantification methods (Experiences 1, 2, 5).  
Categorizing reduces the variance of the predicted results. The physical explanation of the result is 
embedded in the categories. Usually, these approaches do not differentiate between the inputs (e.g. 
weather), the parameters (e.g. floor area, total heat loss coefficient) and the outputs (e.g. indoor air 
temperature) of a physical (or direct) model. The results indicate the influence of each category given 
by the weighting coefficient in the model. 
This kind of approach, which uses less data (in fact the data available), is very effective in practice. It 
allows the prediction of energy consumption with an expected variance for real buildings by using 
data which are available mainly on monthly and/or annual bills. 
Comparison between categories needs a criterion which “normalizes” the consumption in order to 
negate the effect of parameters specific to a given building. For example, Corgnati et al.  (Experience 
6) propose and demonstrate the application of an indicator that normalizes the data as a function of the 
heated volume and the climate, described by the degree days of the site.  
The second class of projection is on parameters of physical models. The main idea in this approach is 
to consider a physical model based on heat balance and to identify the parameters of this model which 
increase the fit between the predicted results and the measurements. One of the most common 
approaches is to use the load curve, which expresses the dependence of the heating (or cooling) 
consumption on the outdoor temperature. This “thermal signature” of the building can be used 
together with the distribution of degree-days or degree-hours in order to estimate the energy 
consumption (e.g. the bin method). Basically, the building signature is obtained by regression. Robust 
regression may be used to improve the prediction in case of perturbation such as the usage of the 
building (Experience 7).  The advantage of this approach is that the thermal behavior of the building, 
the comfort and the climate are decoupled. 
A variant of this method is to use the free-running temperature, which allows the estimation of the 
energy savings for cooling by using free-cooling by ventilation (Experience 8). 
Refinements of the thermal signature or the load curve method are proposed (Experiences 8, 9). 
Ghiaus  (Experience 8) demonstrated the equivalence between the load curve and the free running 
temperature. By using the free-running temperature, the whole range of building operation (heating, 
ventilation and cooling) is described by a single concept. 
Normally, thermal signature is a static method. However, the heat balance may be written taking in 
account the accumulation. By doing so, Danov et al. (Experience 7) obtained a dynamic model which 
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can estimate the influence of the thermal mass of the building on the energy consumption. Solar gains 
may be also included in the thermal signature, reducing the variance of the energy estimation 
(Experience 7).  
 
References (contributions to the Annex 53) 
 
Extended contribution 
Experience 1: Sawako Nakamura, Hiroshi Yoshino, Ayako Miura. Statistical analysis for energy 
consumption of office buildings in Japan 
Experience 2: Sawako Nakamura, Hiroshi Yoshino, Ayako Miura. Statistical analysis for energy 
consumption in residential buildings in Sendai 
Experience 3: Hiroshi Yoshino, Ayako Miura. Survey of the peak electricity in residential buildings 
(see  Experience 1 in Individual Buildings for details) 
Experience 4: Tianchi Hu, Hiroshi Yoshino. Statistical analysis on energy consumption of residential 
buildings in China 
Experience 5: Hiroshi Yoshino. Field Survey and Statistical Analyses on Energy Consumptions in the 
Residential Buildings in Japan 
Experience 6: Stefano Paolo Corgnati, Federica Ariaudo, Marco Filippi. Heating consumption 
assessment and forecast of existing buildings: investigation on Italian school buildings 
Experience 7: Stoyan Danov, Jordi Carbonell, Jordi Cipriano. Building energy performance evaluation 
using daily consumption data 
 
Synthetic contributions 
Experience 8: Cristian Ghiaus. Experimental estimation of building energy performance by robust 
regression 
Experience 9: Cristian Ghiaus. Equivalence between the load curve and the free-running temperature 
in energy estimating methods 
Experience 10: Zhun Yu, Fariborz Haghighat. Mining Hidden Patterns from Real Measured Data to 
Improve Building Energy Performance 
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2.2 Experience 1: Statistical analysis for energy consumption of office buildings in Japan 

(Sawako Nakamura, Hiroshi Yoshino, Ayako Miura) 
 
 
2.2.1 Introduction 

A detailed database is important for an effective measure to reduce CO2 emissions from non-
residential building sector. Therefore, a national wide project DECC (Data-base for Energy 
Consumption of Commercial Buildings) was founded in 2007. The goal of the project was to 
understand the actual conditions for energy consumption of non-residential buildings in Japan. This 
report is authored corresponding to Reference[1]. 
 
2.2.2 Aim of the analysis 

Goals of the survey are: 
Understanding basic information and introduction of energy-saving measures of buildings  
Understanding the average energy consumption per unit of floor area by building usage. 
In order to identify the influential factor on the energy consumption, the multiple regression analysis 
was done. 
 
2.2.3 Database characteristics 

Number of buildings: 1128 office buildings(distributed in 8 different districts) 
Period: April 1st, 2007 to March 31st, 2008 
Questionnaire survey 
Contents: Building information including location, floor area, annual energy consumption data, and 
energy saving measures. 
Online database: unavailable 
 
2.2.4 Research method 

Questionnaire survey 
Questionnaire survey was carried out in office buildings located in eight districts in Japan. The survey 
was conducted from April 1st, 2007 to March 31st, 2008. The questionnaire sheets ware sent to the 
building owners or building managements. Investigation contents are shown in Table 2-19. 
Questionnaire has 2 parts: building characteristic and energy consumption. Figure 2-74 shows the 
number of the valid data by district. We obtained 1128 valid data in Japan.  
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2.2.5 Results 

Building information 
Figure 2-75 shows building scales. In Kanto, large scale buildings (more than 10000 m2) accounted for 
about 60%, since there were lots of high-rise buildings in Tokyo area. On the other hand, in Tohoku 
and Chugoku/Shikoku, percentage of small scale buildings (up to 2000 m2) was high. Figure 2-76 
explains combination of energy sources. The combination of electricity and city gas were the most 
common energy source in Japan. While in Hokkaido and Tohoku, the percentage of buildings using oil 
such as kerosene, heavy oil were relatively high. The reasonable explanation could be that they have 
long and cold winters, so oil was more practical to be used.  
 

 

Table 19: Investigation contents 

Hokkaido
30 

Tohoku 
185 

Kanto 
 349 

Chubu 
75 

Kansai 
170 

Kyusyu 
131 

Hokushinetu 41 

Chugoku/Shikoku  
147 

Figure 74: Valid data 

Building characteristic
Location,floor area,building area,parking area,storey,completed
year,office hours,airconditioning period, etc…

Energy Consumption
Annual/monthly consumptions for electricity,city gas,LPG(Liquefied
Petroleum Gas),heavy oil,kerosene,DHC(District Heating and
Cooling) and others

Figure 75: Building scales 
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Operation of heating and cooling  
Figure 2-77 illustrates the cooling period. In Hokkaido and Tohoku, cooling period were shorter than 
the others. Some of the buildings in other regions were using cooling systems throughout the whole 
year. In Kanto, cooling period was the longest, but Kanto is not located in southern part in Japan. The 
explanation could be that there are many large scale buildings with many workers and office 
equipment such as computers and photocopiers, so that the office temperature tends to rise due to 
internal heat gain. Figure 2-78 shows heating period of each region. Generally in Japan most of the 
buildings used heating system from December to March. Heating periods of the buildings in Hokkaido 
were the longest which is from November to April.  
 

 

Figure 2-76: Energy source  

Figure 2-77: Cooling period  
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Energy consumption 
Figure 2-79 shows the relations between annual primary energy consumption and floor area. The 
correlation between energy consumption and floor area was strong. Figure 2-80 shows annual energy 
consumption per square meter by region. The average of energy consumption per square meter was 
1738[MJ/ m2]. In Kanto, annual primary energy consumption per square meter was higher than the 
others. On the other hand, in Tohoku and Hokushinetu, it was lower.  

 
 
Multiple regression analysis 
In order to understand the influential factors which determine the energy consumption, multiple 
regression analysis was carried out by SPSS statistic 18. In this analysis, backward selection method 
was used. By using this method, influential factors with low impact were removed. Annual total 
energy consumption and annual energy consumption per square meter were set as the dependent 
variable. Some factors such as floor area, completed years, cooling period, heating period were 
selected as independent variables. To avoid multicollinearity, storey and cooling degree day were not 

- 

 

Figure 79: Relations between annual 
primary energy consumption and floor area 

Figure 80: Annual energy consumption per square meter  

Ave + 

- 

Max 

Min 

75% 

25% 

(TJ/Year) 

(m2) 

(MJ/m2) 

Figure 2-78: Heating period  
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used. Table 2-20 shows result of multiple regression analysis for total energy consumption. The 
coefficient of determination was 0.843. Cooling period, density of users, weekly business hours and 
completed years were removed by backward selection method. The standardized partial coefficient of 
floor area was 0.901. For total energy consumption, floor area was the largest impact factor. Table 2-
21 shows the result of multiple regression analysis for energy consumption per square meter. The 
coefficient of determination was 0.255. Completed years and heating period were removed by 
backward selection method. Cooling period (0.264), density of users (0.194), floor area (0.143) were 
relatively high in standardized partial regression coefficient. These factors have certain effect on 
energy consumption per square meter. If you look at heating degree day, you can find the partial 
regression coefficient have a minus sign. It means that energy consumption in building which is 
located in region with cold winter is smaller than that in other regions.  
 

  
2.2.6 Conclusions 

In this study, the outline of Data-base for Energy Consumption of Commercial Building was shown. 
In order to understand the actual usage condition of office building, the investigation was held in 2008, 
where 1128 valid data were obtained. In Kanto, cooling period was longer than the others, because 
there were many buildings with more internal heat from high density of workers in them. The national 
averages of the annual primary energy consumption per square meter was 1738[MJ/m2

・Year]. In 
Kanto, the average annual energy consumption per square meter was higher than the other regions. 
The explanation could be that there are many high-rise buildings with many carrier devices and long 
cooling period. On multiple regression analysis for total energy consumption, the coefficient of 

Table 2-20: Result of multiple regression analysis for total energy consumption  

Independent variables Unit
Partial regression
coefficient

Standardized
partial regression
coefficient

P-value

Floor area m
2 2.389 0.901 0.000

Heating period days/year 154.190 0.077 0.000
Heating degree day ℃・day -5.743 -0.042 0.005
Cooling period days/year ‐ ‐ ‐

Density of users person/m
2

‐ ‐ ‐

Weekly business hours hours/week ‐ ‐ ‐

Completed years Year ‐ ‐ ‐

Constant ‐ -15532.665 0.001

Independent variables Unit
Partial regression
coefficient

Standardized
partial regression
coefficient

P-value

Cooling period days/year 2.784 0.264 0.000
Density of users person/m

2 6631.338 0.194 0.000
Floor area m

2 0.004 0.143 0.000
Weekly business hours hours/week 3.280 0.119 0.000
Heating degree day ℃・day -0.087 -0.065 0.043
Completed years Year ‐ ‐ ‐

Heating period days/year ‐ ‐ ‐

Constant ‐ 914.074 0.000

Table 2-21: Result of multiple regression analysis for energy consumption per square meter  
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determination was high, because total energy consumption and floor area have a strong linear 
relationship. On the other hand, on multiple regression analysis for energy consumption per square 
meter, the coefficient of determination for was not so high. However, cooling period, density of users 
and floor area have some effects on energy consumption per square meter. From the results, it’s 
important to reduce internal heat load for energy saving in office buildings. 
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2.3 Experience 2: Statistical analysis for energy consumption of residential buildings in 
Sendai 

(Sawako Nakamura, Hiroshi Yoshino, Ayako Miura) 
 
2.3.1 Introduction and aim of the analysis 

The energy consumption of residential sector has been increasing significantly. Therefore, it is 
necessary to analyze how much energy is used by various sources in order to reduce energy 
consumption in residential buildings. In this study, questionnaire survey has been distributed to clarify 
actual pattern of yearly energy consumption in Sendai. Sendai is one of the cities in Tohoku region. 
Regarding climate condition, Sendai is cold and snowy in winter, but is hot with high humidity in 
summer. 
Quantification method 1 was conducted based on the results of the measurements, so as to find out the 
influential factors on residential energy consumptions in Sendai city. 
This report was authored corresponding to a paper Ref [1]. 
 
2.3.2 Database characteristics 

-Number of buildings: 1274 houses 
-Period: October, 2007 to March, 2009 
- Questionnaire survey 
-Contents: number of household, floor area, energy consumptions, housing structure, lifestyles and 
energy saving consciousness and so on. 
-Online database: unavailable 
 
2.3.3 Method 

In order to understand the influential factors which determine the energy consumption, quantification 
method 1 was carried out by SPSS statistic 18. Quantification method 1 analyzes qualitative factors. 
Annual energy consumption for cooling, heating and hot water supply were set as the dependent 
variable one by one. Some factors such as number of household, floor area, completed years, house 
type, and occupant behavior were selected as independent variables. 
 
2.3.4 Results 

Figure 2-81 shows the basic information of the households. In terms of house type, detached houses 
accounted for about 57% of the total houses and apartment houses accounted for about 43%. As for 
detached houses, wood construction accounted for about 80% of the total. As for apartment houses, 
RC (reinforced concrete) was the most common construction, which accounted for about 70%, on the 
other hand, wood construction accounted for about 17% of the total. The average floor area of a 
detached house was 131.1 m2 and that of an apartment house was 55.9 m2. The average of number of 
family members was about 2.7 people.  
Figure 2-82 shows the frequency distribution of the total energy consumption. The energy 
consumption was converted by using the energy conversion value for each heat source, which are 
Electricity:3.6MJ/kWh, City gas:45.0MJ/m3, LPG:100.5MJ/m3, Kerosene:36.7MJ/l. The annual 
average energy consumption was 40.8GJ/household, and the standard deviation was 27.7GJ. In this 
investigation, since the response came from many kinds of families and houses, energy consumption 
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varied greatly between each household. There are two peaks, the first peak around 15 GJ/household is 
mostly from single-person households and the second peak around 30GJ/household is mainly from the 
households with two or more people. 
 

 

 

 

 

 

Figure 2-81: Basic information of the households 
Figure 2-82: Annual total energy consumption of all 

buildings 
 
Figure 2-83 shows energy consumption according to the house type. Average annual energy 
consumption of a detached house and an apartment house are 57.0GJ and 27.3GJ, respectively. 
Normally, detached houses have larger floor area than apartment houses, and there is also greater heat 
loss. Therefore, energy consumption of a detached house is considered to be bigger than an apartment 
house. It can be found that kerosene consumption of a detached house is much bigger than that of an 
apartment house. This also points to the possibility that the ownership ratio of the heating apparatus 
using kerosene is higher in detached houses.  
 
Figure 2-84 shows energy consumption according to the number of occupants. In the figure, DH 
means detached house, AH means apartment house, and the number after DH or AH means the 
number of occupants. Energy consumption increases as the number of family members increases. As 
for energy consumption per person, energy consumption tends to decrease as the number of family 
members increases. However, single-person households consume less energy because the occupants 
go out for a long time, and they tend not to fill the bathtub with hot water, but only use the shower.  
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Figure 2-83: Energy consumption by house type Figure 2-84: Energy consumption by number of 

occupants 
 
Figure 2-85 shows the boxplot of energy consumption for each end use. The annual average energy 
consumption for hot water supply was 15.2GJ/household, space heating was 12.5GJ/household, space 
cooling was 0.3GJ/household and other was 13.8GJ/household. The highest energy consumption came 
from hot water and space heating required the second most amount of energy. Energy consumption of 
space heating varies greatly compared to the categories “hot water supply” and “other”. This may be 
because the airtightness and insulation of the house influence the consumption, in addition to space 
heating usage condition. The energy consumption for space cooling was much smaller than those of 
hot water supply and space heating. 
 

  

 

Figure 2-85: Energy consumption for each end use 
 
Figure 2-86 shows the relationship between the energy consumption of space heating and usage 
condition of air-conditioner. The energy consumption of space heating increases as the utilization 
frequency of the air-conditioner is higher, and it was low when the air-conditioner is turned off 
frequently.  
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Figure 2-86: Relationship between energy 
consumption for space heating and usage 

condition of air-conditioner 

Figure 2-87: Relationship between energy 
consumption of space heating and clothes 

 
Figure 2-87 shows the relationship between energy consumption and clothes. When occupants always 
wear many layers, energy consumption of space heating was small, however, when occupants always 
wear less clothes, energy consumption was higher.   
Figure 2-88 shows the relationship between energy consumption of space cooling and the utilization 
frequency of the air-conditioner. When the number of days that space cooling is used increases, the 
energy consumption also increases.  
Figure 2-89 shows the relationship between the energy consumption of space cooling and usage 
condition of air-conditioner. The energy consumption of space cooling directly correlates with the 
utilization frequency of the air-conditioner, and therefore the energy consumption resulting from space 
cooling was low when the air-conditioner is turned off frequently. 
 

 

 

 

 

Figure 2-88: Relationship between energy 
consumption of space cooling and usage frequency 

of air-conditioner 

Figure 2-89: Relationship between energy 
consumption of space cooling and usage condition of 

air-conditioner 
 

  

Energy consumption for space heating (GJ/Yr) 
Energy consumption for space heating (GJ/Yr) 

Energy consumption for space heating (GJ/Yr) Energy consumption for space heating (GJ/Yr) 



166 
 
 

  
Figure 2-90: Relationship between energy 

consumption of hot water supply and energy saving 
action taking shower 

Figure 2-91: Relationship between energy 
consumption of hot water supply and additional 

heating of bath water 
 
Figure 2-90 shows the relationship between the energy consumption for hot water supply and saving 
water when taking shower. When occupants try to save water, energy consumption of hot water supply 
tends to decrease, and when occupants use a lot of water, energy consumption increases.  
 
Figure 2-91 shows the relationship between energy consumption for hot water supply and additional 
heating of bath water. As the frequency of additional heating increases, energy consumption clearly 
increases. If the occupants do not fill bathtub with hot water, energy consumption of hot water is small. 
If the occupants use an automatic control to set the temperature of the hot water in the bath, energy 
consumption of hot water is especially high. The energy consumption of space heating is set as 
dependent variable. 
Figure 2-92 shows the category weight of each item of energy consumption for space heating. The 
coefficient is 0.436 and the constant is -1.74. The house type and the number of occupants have large 
impacts on space heating. In detached houses, the perimeter area is much larger than that of apartment 
houses, so heat loss and energy consumption are both higher. Moreover, the earlier the house was built, 
the higher the energy consumption. One reasonable explanation could be that the quality of the 
insulation and airtightness in old houses are low, so energy consumption is higher. As for the usage 
condition of space heating, the household that answered, “Often keep on” and “Always keep on” 
consumed high amounts of energy. Furthermore, if the occupants wear many layers, energy 
consumption is lower than others. From these results, energy consumption can be reduced by certain 
occupant behaviors. 
 
Energy consumption of space cooling is set as a dependent variable. Here, since a question is asked 
about air-conditioner (except for an electric fan) usage, the household that do not use an air-
conditioner are removed from analysis. Figure 2-93 shows the regression coefficient. The coefficient 
of determination is 0.120 and the constant is 0.093. The utilization frequency and the number of 
occupants have a large impact on energy consumption. In addition, the energy consumption of space 
cooling increases as number of occupants increases. Moreover, energy consumption increases as the 
number of days an air-conditioner is used increases. The year built and turning off air-conditioner 
frequently do not influence energy consumption. The energy consumption of hot water supply is set as 
a dependent variable.  
 
Figure 2-94 shows the regression coefficient. The coefficient is 0.396 and the constant is -1.9. The 
number of occupants has a high influence on energy consumed by the hot water supply. Energy 
consumption of hot water supply clearly increases as number of occupants increases. The second 
largest factor is trying to save water when taking a shower. If the occupants try to save water, energy 
consumption decreases. The third largest factor is reheating bath water. Energy consumption increases 
as the frequency of reheating bath water increases. Moreover, if occupants control the water 
temperature using an automatic control, energy consumption is the largest. When the occupants use an 
automatic control, the bath water reheats frequently without occupants being aware. When the 
occupants intentionally try to save water, they can reduce their energy consumption. 

Energy consumption for space heating (GJ/Yr) Energy consumption for space heating (GJ/Yr) 
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Figure 2-92: Category weight of space heating Figure 2-93: Category weight of space cooling 
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Figure 2-94: Category weight of hot water supply 

 
2.3.5 Conclusions 

The survey was conducted to clarify actual energy consumption from October 2008- March 2009 in 
Sendai. A total of 1274 households responded to the survey. The results are as follows: 
The average annual energy consumption in Sendai was about 41GJ/household. The average energy 
consumption of the detached houses was larger than that of the apartment houses.  
Energy consumption increased as the number of occupants increased. As for energy consumption per 
person, energy consumption tends to decrease as the number of family members increases. 
Energy consumption of hot water supply was the largest end use. The annual average was 16.8 
GJ/household, followed by energy consumption of other and space heating. The energy consumption 
of space cooling was much smaller than other end uses.  
There was a clear difference in levels of energy consumption between the households that tried to save 
energy and ones that did not tried to save. 
The actual largest end use of energy consume is hot water supply, but most households think space 
heating is the biggest. Few occupants responded that they could reduce the energy consumed by the 
hot water supply. This may be because they do not know that the energy consumption of hot water 
supply is large.  
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Most people practiced energy saving actions. On the other hand, the energy saving actions related to 
the bath were not carried out very often. 
From the results of multiple regression analysis, the number of occupants and year built have a large 
impact on the energy consumption of space heating. For the energy consumption of space cooling, the 
utilization frequency and the number of occupants have a large impact. For the energy consumption of 
hot water supply, the number of occupants and utilization behavior related to the shower and reheating 
bath water have a large impact. 
According to the analysis, it was found that occupant behavior had a large impact on energy 
consumption. There is potential to reduce energy consumption in the residential building sector by 
changing occupant behavior. It is important for occupants to understand how much energy they use for 
each end use and find the best way to reduce their energy consumption. 
 
2.3.6 Reference 

[1] Hiroshi Yoshino, Sawako Nakamura, Sayuri Nishiya: Statistical Analysis on Relationships 
Between Energy Consumption and Energhy Saving Consciousness in Residential Buildings in 
Sendai City, Proceedings of IBPC5 conference, pp. 907-912, 2012. 
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2.4 Experience 4: Statistical analysis on energy consumption of residential buildings in 
China 

(Tianchi Hu, Hiroshi Yoshino) 
 
2.4.1 Introduction and the aim of the analysis 

The energy consumption of residential sector has been increasing significantly over past three decades. 
Therefore, it is necessary to analyze how much energy is used by various sources and the factors 
influencing energy so as to reduce energy consumption in residential buildings. In this study, a large-
scale questionnaire survey has been conducted to clarity actual condition of yearly energy 
consumption in the urban areas of Harbin, Urumqi, Dalian, Beijing, Maanshan, Shanghai, Chongqing, 
Changsha, Guangzhou and Kunming. The investigated city of Beijing was divided into Beijing(A) 
where households use district space heating system, and Beijing(B) where households use domestic 
space heating.  
Quantification TheoryⅠis used based on the results of measurement and questionnaire, so as to find 
out the important factors that influence the energy consumptions in ten cities. 
 
2.4.2 Outline of the survey  

Location of investigated cities  
The survey was conducted in the urban areas of Harbin, Urumqi, Dalian, Beijing, Maanshan, Shanghai, 
Chongqing, Changsha, Guangzhou during 2007/10-2008/9, and Kunming during 2008/10-2009/9. 
Figure 2-95 shows the location of these investigated cities. The investigated cities are all major cities 
in China and are distributed in the five zones [1].   
 

 
Figure 2-95: Location of investigated cities. 

 
2.4.3 Investigation method  

This study was done by using questionnaire survey. The questionnaire were distributed as well as 
collected through the cooperative researchers in local universities. Total number of 1004 families 
living in urban areas of the ten cities was selected by the researchers. Table 22 lists the investigation 
date, and number of distributed questionnaire, feedback and meter readings. Each family was asked to 

Hot Summer 
& Cold Winter 

Moderate Zone 

Hot Summer & 
Warm Winter 

Very Cold Zone Cold Zone 

Shanghai 

Beijing 

Chongqing 

Guangzhou 

Changsha 

Urumqi 

Dalian 

Maansha

Very Cold Zone 

Kunming 

 Kunming 

Harbin 



171 
 
 

answer a questionnaire for the summer and winter seasons, including basic information related to the 
characteristics of their building, heating & cooling periods, daily operation time, usage of heating & 
cooling appliances, number of occupants, annual income and thermal sensation. In addition, monthly 
consumptions of electricity & gas of each family in a year was collected by the meter readings. In this 
investigation, consumption of energy by central district heating is not included in Harbin, Urumqi, 
Dalian and Beijing. The investigated city of Beijing was divided into Beijing(A) where households use 
district space heating, and Beijing(B) where households use domestic space heating. 
 
Data processing for deleting and selection 
The families are taken as samples, and all the items in the questionnaire are taken as variables. The 
methods of the processing for the missing data refer to the method in the research by Chen et al. [2]. 
The numbers of feedbacks of questionnaire and meter readings are the valid sample quantities.  
 
2.4.4 Results of the investigation 

Building characteristics 
67% in Chongqing, 52% in Changsha and 48% in Guangzhou are more than 120m2, as shown in 
Figure 2-96. The average floor area in Chongqing is 130.6 m2 (the largest among the ten cities). And 
in Guangzhou, Changsha and Kunming, the average floor area is about 105 m2. In Dalian, the average 
floor area of residences is 57 m2, and 41.5% of residences are below 60 m2.  
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Figure 2-96: Floor area of residences Figure 2-97: Material of window frame 
 
Figure 2-97 shows the material of window frames used in the ten investigated cities. More than 60% 
of the housing units used aluminum alloy as window frame material in Kunming, Guangzhou, 
Changsha and Shanghai. Plastic steel window frames are popular in Chongqing, Maanshan, Dalian, 
Urumqi and Harbin. In Beijing, belongs to the cold zone of China, plastic steel window frame and 
wooden window frame are normally adopted because of their heat transfer coefficients are low.  
 
Housing appliances 
The residences in Harbin, Urumqi, Dalian and Beijing were equipped with central heating systems. In 
Beijing, besides 41% of households used central heating, 32% used individual heating, and 24% used 
both of them. Households in Changsha, Chongqing, Shanghai and Maanshan used individual space 
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heating units. The possession rate of heating appliances in Guangzhou and Kunming is very small, 
especially in Kunming, only 2% of households have space heaters shown as Figure 2-98.  
 

0% 20% 40% 60% 80% 100%

Kunming

Guangzhou

Changha

Chongqing

Shanghai

Maanshan

Beijing

Dalian

Urumqi

Harbin

Central heating Central  & individual heating

Individual heating Non-equiped

 

0% 20% 40% 60% 80% 100%

Kunming

Guangzhou

Changsha

Chongqing

Shanghai

Maanshan

Beijing

Dalian

Urumqi

Harbin

 

Figure 2- 98: Types of heating appliances Figure 2- 99: Possession of air-conditioner 
 
Figure 2-99 shows the possession of air conditioner. Each household in Changsha, Chongqring and 
Shanghai, and more than 95% of households in Maanshan and Guangzhou had installed air-
conditioners. However, very few households had air-conditioner in Kunming, Urumqi and Harbin, as 
the climate is moderate in these cities in summer, especially in Kunming, only 5% of homes had air-
conditioners. The possession rate of electric fan of each household in Kunming, Urumqi and Harbin 
was smaller than that of other seven cities, especially in Kunming, only 14% of households had a fan. 
The possession rate was highest in Guangzhou, and 50% of the families owned three fans. 
 
Considering the water heater, 9.6%, 6.1% and 29.5% of residences in Harbin, in Beijing and in 
Changsha were respectively equipped with central hot water supply systems, while residences in the 
other cities were equipped with individual water heater. Figure 2-100 shows the energy sources of 
individual water heater. The gas water heater is the most popular type in Guangzhou, Changsha, 
Chongqing and Shanghai, while the electrical water heater is common in Dalian and Urumqi. It is 
worth mentioning that many households in Kunming, Maanshan, Beijing and Urumqi were equipped 
with water heater of solar energy, especially in Kunming with large percentage above 55%. 
  
Family characteristics 
Regarding the number of family members, the three people is the main type among investigated 
families, the size of families in Harbin, Urumqi, Dalian, Beijing and Changsha was commonly 3-
person. The average family size in Maanshan, Shanghai and Chongqing was below 2.7 people, while 
the average Guangzhou family was 3.4 people.  
 
Figure 2-101 shows the annual income of the family. Households in Chongqing had the highest 
income, there were 17% of the households having annual income above 150,000 RMB, and 25% of 
the families had the annual income between 50,000 and 100,000 RMB. The annual income of 
households in Kunming ranked second. The households with annual income above 150,000 RMB, 
between 100,000 and 150,000 RMB, and between 50,000 and 100,000 RMB, were 9%, 4% and 37% 
respectively. The annual income between 30,000 and 50,000 RMB is common in Changsha. The 
families in Urumqi had the lowest annual income, and 82% of the families earned less than 30,000 
RMB in a year.  
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Figure 2-100: Energy sources of individual water 

heaters 
Figure 2-101: Annual income of families 

 
Operation of heating and cooling  
Figure 2-102 illuminates the operation period of heating in a year among all the investigated families. 
The heating period in Harbin, Urumqi, Dalian and Beijing was longer than other investigated cities. 
The households in Harbin and Urumqi used space heating from October to April of next year, while 
the households in Dalian and Beijing used space heating from November to March of next year. In 
Guangzhou and Kunming, the percentage of households using heating was very low with the average 
of 15% from October to March of next year and 5% from December to March of next year 
respectively, since these two cities have generally warmer winter than the other cities. Heating period 
in very cold and cold climate zones is normally longer than that the other zones. 
 In Harbin, Urumqi, and Dalian, the heating system was operated throughout each day, as shown in 
Figure 2-103. In the other seven cities, there is one peak in the evening hours from 18:00 to 22:00. The 
daily using time in very cold and cold climate zones was longer than that the other zones.  
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Figure 2-102: Operation period of heating in winter Figure 2-103: Daily operation of heating in winter 
 
Figure 2-104 shows the operation period of air-conditioning in summer among all the investigated 
cities. Each city used air-conditioning from June to October, except Kunming where less than 30% of 
households used air-conditioning between July and August.  
Regarding the daily operation of the air-conditioning, a very few residences in Harbin, Urumqi and 
Dalian used air-conditioning due to the good weather of the summer in these cities. The hours of peak 
air-conditioning usage in Beijing was from 18:00 to 22:00 utilized by 30% of the households, and in 



174 
 
 

Maanshan the peak was around 20:00 used by 90% of families, as shown in Figure 2-105. The daily 
using time of air-conditioning in Chongqing was the longest among all ten cities. 
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Figure 2-104: Operation period of AC (summer) Figure 2-105: Daily operation of AC (summer) 

 
Energy consumption 
 
a) Monthly energy consumption 
Electricity and the different kind of gas are converted to calorific values [2-3]. Figure 2-106 shows the 
annual energy consumptions of ten cities with the total number of respondents shown next to the city 
name. The annual energy consumption in Chongqing reached 19.2 GJ which was the largest consumer 
among the ten investigated cities, cooling accounted for 1.4 GJ which was also the highest among all 
the cities, and cooking accounted for 7.1 GJ. In Beijing(A), households who use district heating 
consumed 12.5 GJ of energy. On the other hand, Beijing(B) households who use domestic heating 
consumed 15.6 GJ which was the second largest, heating used 3.1 GJ accounting for 20% of the 
annual energy use. From the results of this survey, it was found that Guangzhou was the third largest 
energy consumer with the total annual energy consumption reaching 15.2 GJ, and cooking accounted 
for 7.2 GJ. It can be seen that energy consumption of cooking in Guangzhou and Chongqing are the 
first and second largest consumers respectively. This is mostly due to the fact that Chinese people in 
these two cities enjoy cooking more comparing to other cities.  
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Table 2-22: End use of energy consumption  

Type Energy 
source 

End use 

Electricity Cooling & heating, 
lighting, others 

Type 1 

Gas Cooking, hot water 
Electricity Cooling & heating, 

lighting, hot water, 
others 

Type 2 

Gas Cooking 
1.1

5.3

5.9

1.3

1.8

1.7

2.4

1.9

2.0

1.5

1.6

5.1

5.1

5.2

7.2

5.5

4.8

4.6

4.6

4.9

5.9

4.4

1.0

0.5

1.4

1.0

0.4

0.4

0.6

0.3

1.1

0.4

3.1

0.5

6.0

7.2

5.2

4.9

6.1

7.1

6.3

6.5

6.0
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1.5

1.4

0 5 10 15 20 25

Kunming(74)

Guangzhou(47)

Changsha(12)

Chongqing(24)

Shanghai(56)

Maanshan(49)

Beijing(B) (91)

Beijing(A) (13)

Dalian(50)

Urumqi(32)

Harbin(58)

Energy consumption ［GJ/year］

Space cooling Space heating Cooking Hot water Other

12.2

15.2

14.8

19.2

13.9

13.6

15.6

11.9

12.3

12.5

13.0

 Figure 2-106: Energy consumption in a year 
 
b) Analysis on the influence factors of energy consumption 
The partial correlation coefficient of Quantification Theory I is usually used as an important index to 
evaluate contribution extents of independent variables to the dependent variable. The significance test 
is taken to judge what extent the partial correlation coefficient would be, then the factors will have 
effect on residential energy consumption. The significance probability is bigger, the partial correlation 
coefficient is less, and the factor affects residential energy consumption is less. It is assumed that if the 
significance probability is less than 0.05, the factor has influence on energy consumption [4]. The 
category weight value of each variable is used to analyze the influence extent of all the categories of 
qualitative variables and quantitative variables on the dependent variable. The larger the value is, the 
more the energy is used.  
 
The qualitative and quantitative independent variables used in this analytic model refer to building unit 
characteristics, family characteristics and housing appliances. The annual energy consumption amount 
of each family sample is taken as the dependent variable. Software of SPSS (Statistical Program for 
Social Sciences) is used for calculation. Ten cities are classified into two main groups, Group 1 and 
Group 2, based on the type of space heating. Since energy consumption data of district heating is not 
included in this survey, Group 1 includes Harbin, Urumqi, Dalian and Beijing(A) where households 
use district heating, and Group 2 includes Beijing(B), Maanshan, Shanghai, Chongqing, Changsha, 
Guangzhou and Kunming where households use domestic heating.  
 
c) Analysis on the influence factors of energy consumption in Group 1 
Table 2-23 shows the results of the influence factors on annual energy consumption of Group 1. It can 
be seen that the type of water heater and the number of family members are the two important 
influence factors on annual energy consumption. The water heater type is the most important factor 

District heating  

is not included 
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influencing annual energy consumption based on its values of the partial correlation coefficient and 
the significance probability. The value of category weight can be used to judge the influence extent of 
categories of qualitative variables, and larger value indicates that this category leads to larger energy 
use. Thus, water heater of electricity has the largest category weight value, indicated that the 
households using electricity-driven water heaters in these cities consumed the most energy. The 
households using solar energy, on the other hand, consumed the least energy. Regarding the 
construction year, the older buildings consumed larger energy since new buildings has better energy 
saving performance. Considering window frame, wood and plastic steel window saved more energy 
than the other types. The buildings using wood as window frame consumed the lesser energy. As for 
the quantitative variables, the larger the floor area is, the larger the number of family members is, the 
more annual income is, the more HDD (Heating degree-day, indoor temperature set as 18 ºC) is, the 
more the energy is used. 
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Table 2-23: Influence factors on annual energy consumption of Group 1. 
Influence factors Categories Sample Categories weight Partial 

correlation 

coefficient 

Significance 

probability 

Harbin 58 

Urumqi 36 

Dalian 53 

Location 

Beijing(A) 13 

 0.148 0.330 

Before 1980 16 

80s 28 

90s 67 

Construction year 

After 2000 49 

 0.296 0.007 

Brick concrete 100 

RC 49 

Building structure 

Other 11 

 

0.202 0.040 

≤3000 64 HDD  

(ºC·day) >3000 96 
 

0.186 0.275 

< 60 m2 28 

60 - 80 m2 38 

80 - 100 m2 50 

100 - 120 m2 23 

Floor area  

> 120 m2 21 

 0.217 0.026 

Aluminum alloy 38 

Plastic steel 89 

Wood  18 

Window frame 

Iron 15 

 

0.084 0.776 

Gas 31 

Electricity 74 

Solar energy  22 

Energy source of 

water heater 

Other 33 

 

0.429 0.001 

< 10000  13 

10000 - 30000 14 

30000 - 50000 37 

50000 - 100000 61 

Annual income 

(Yuan) 

> 100000 35 

 

0.102 0.807 

1 11 

2 35 

3 86 

Number of family 

members  

≥ 4 28 

 

0.324 0.002 

 
 
 
 

GJ/year -3 -2 -1 0 1 2 3 4 
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d) Analysis on the influence factors of energy consumption in Group 2 
Table 2-24: Influence factors on annual energy consumption of Group 2. 

Influence factors Categories 
Sample 

Categories weight 
Partial 
correlation 
coefficient 

Significance 
probability 

Beijing(B) 90 

Maanshan 56 

Shanghai 123 

Chongqing 56 

Changsha 26 

Guangzhou 50 

Location 

Kunming 74 

 

0.404 0.001 

Before 1970 17 

70s 25 

80s 86 

90s 180 

Construction year 

After 2000 167 

 

0.224 0.002 

Brick concrete 220 

RC 221 Building structure 

Other 34 

 0.217 0.003 

<1000 124 

1000 - 2000 235 
HDD 
(ºC·day) 

> 2000 116 

 

0.209 0.004 

< 100 220 

100 - 200 205 
CDD 
(ºC·day) 

> 200 50 

 0.223 0.002 

< 60 m2 63 

60 - 80 m2 103 

80 - 100 m2 96 

100 - 120 m2 83 

Floor area  

> 120 m2 130 

 

0.226 0.002 

Aluminium alloy 231 

Plastic steel 163 

Wood  46 
Window frame 

Iron 36 

 

0.203 0.004 

Gas 266 

Electricity 83 

Solar energy  87 
Energy source of water 
heater 

Other 39 

 

0.215 0.003 

< 10000  45 

10000 - 30000 119 

30000 - 50000 145 

50000 - 100000 121 

Annual income (Yuan) 

> 100000 45 

 

0.201 0.004 

1 47 

2 103 

3 224 

4 73 

Number of family 
member  

≥ 5 28 

 

0.192 0.005 

 GJ/year 0 1 2 3 4 -3 -2 -1 
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Table 2-24 shows the results of the influence factors on annual energy consumption of Group 2. 
Annual energy consumption results from the integrated influence factors in different aspects. City 
location, construction year, building structure, floor area and CDD (Cooling degree-day, indoor 
temperature set as 26 ºC) are important factors influencing the annual energy consumption; city 
location is the most important influence factor among these factors. The results showed that 
Chongqing had the largest category weight value, while Beijing (B) Guangzhou and Changsha ranked 
after Chongqing, while Kunming had the value at the smallest in seven in cities. This change trend of 
value in these cities is also consistent with the magnitudes of energy use amounts in these cities. 
Considering the building structure, the buildings constructed by reinforced concrete are distinctly less 
energy efficiency than the other structures. Regarding the window frame, the buildings used wood as 
window frame consumed the least energy since the material has the smallest heat transfer coefficient. 
Solar energy water heater helps to save energy, while the families used gas water heaters consumed 
the most energy. Based on the saturation of water heaters in these cities, the prevalence of solar water 
heaters in Kunming and Maanshan can lead to the low energy use in some extent in the two cities. 
Considering CDD, category of 100-200 used more energy than the others.  
For the other quantitative variables, the larger the floor area is, the larger the number of family 
members is, the more annual income is, the more HDD is, the more the energy is used. 
 
2.4.5 Conclusions 

This study investigated the urban residential energy consumption under actual conditions by the way 
of questionnaire survey on Chinese families that reside at various climate zones. The following are the 
key findings of this study: 
Most of the investigated buildings are built by brick concrete except in Guangzhou and Kunming 
where almost 70% of the buildings use reinforced concrete as building structure. As for floor area, 
67% of the residences in Chongqing are more than 120 m2, which is the largest.  
Family size with 3-person is common. However, the average family size in Guangzhou is 3.4 people. 
Households in Chongqing has the highest income, 17% of the households have the annual income 
above 150,000 RMB, and 25% of the families have the annual income between 50,000 and 100,000 
RMB.  
Almost every household in Harbin, Urumqi, Dalian and Beijing equipped with central heating system. 
Regarding the operation of heating, the heating periods in Harbin, Urumqi, Dalian and Beijing are 
longer than the other cities, all residences in Harbin, Urumqi and Dalian use heating in every day. On 
the other hand almost all households in Maanshan, Shanghai, Chongqing, Changsha and Guangzhou 
have cooling equipment such as air-conditioners and fans. 
Annual energy consumption in Chongqing reaches 19.2GJ which is the largest among the ten 
investigated cities, and cooking accounts for 7.1 GJ. In Beijing (B) where households use domestic 
heating consumes 15.6 GJ which it is the second largest, the heating use 3.1 GJ accounting for 20% in 
the total. 
In Group 1, the water heater type is the most important influence factor, and the number of family 
members is the second most important influence factors on annual energy consumption. In Group 2, 
city location, construction year, building structure, floor area and CDD are important factors 
influencing annual energy consumption. The city location is the most important factor influencing 
annual energy consumption.  
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2.5 Experience 5: Field Survey and Statistical Analyses on Energy Consumptions in the 
Residential Buildings in Japan 

(Hiroshi YOSHINO, Graduate School of Engineering, Tohoku University, Japan) 
(Ting SHI, Building Research Center, Vanke, China) 
 
2.5.1 Introduction 

Field surveys of energy consumptions have been carried out in eighty residential buildings which are 
located in six different districts of Japan, with the purpose to understand the energy consumptions by 
end users in residential buildings and then to build up a national-level database. In addition, statistical 
analyses were conducted so as to find out the influential factors on residential energy consumptions in 
Japan. Finally, the database and the statistical analyses results will be of help as evidences for the 
house makers and equipment manufacturers to do environment-friendly developments, as well as for 
the residents to select environment-friendly household appliances to install into their houses.  
 
2.5.2 Outline of the investigation 

Selection of the households 
The two-year survey on energy consumptions was conducted in eighty households located in six 
different districts of Japan (Figure 2-107) from December 2002 to November 2004. The six districts 
are Hokkaido, Tohoku, Hokuriku, Kanto, Kansai and Kyusyu (including Okinawa). Fifteen 
households were selected in Kanto District, and thirteen households were selected in each of the rest 
five districts. Two types of residential buildings, namely detached house and apartment, respectively, 
were under investigated. In each district, nine households live in detached houses and the others live in 
apartments. Households which met the following essential conditions and/or optional conditions were 
selected in the survey.  
 

District Number
Hokkaido 13
Tohoku 13
Hokuriku 13
Kanto 15
Kansai 13
Kyushu・Okinawa 13
Total 80  

Figure 2-107: Location 
 
Essential conditions 
Among the nine detached houses in each district, at least four of them are wood constructed with floor 
area around 100~150m2 and meet the local new energy saving standard. 
Three or four family members: husband, wife and one to two children.  
Optional conditions 
The houses which can represent the district characteristics (e.g., well insulated and air-tight houses in 
Hokkaido) are selected. 
Give priorities to the households which can cooperate in the long-term investigation. 
 
Investigation items and methods 
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Table 2-25 shows the investigation items and methods. Special instruments as shown in Figure 2-108 
(a, b, c) were used to measure the consumptions of electricity, gas and kerosene, while data loggers 
with temperature sensors as shown in Figure 2-108 (d) were used to measure indoor air temperatures. 
The electricity measuring systems record electricity consumption in one minute (Wh) and the peak 
value (W). The kerosene measuring system has a flow meter inside, which record the kerosene volume 
(l) in five minutes by the pulse logger. The temperature and humidity data loggers, which were set in 
the air-conditioned and non-air-conditioned rooms at the height of 1.1m above floor, record the data 
every 15 minutes. In addition, questionnaire and hearing surveys with the cooperation of the occupants 
have been carried out to know their lifestyles. 
 

Table 2-25: Investigation items and methods 
Method

Electricity Measured by instrument every one minute
Gas Measured by instrument every five minute
Kerosene Measured by instrument every five minute
Temperature Measured by data loggers with temperature sensors every 15 minutes

Life style, Concious on environment, Annual income, utilization of equipment…
Basic information of the building, Family members…

Field
Measurements

Item

Questionnaire Survey
Hearing  

 

 
Figure 2-108: Measuring instruments (a, b, c and d from left to right: electricity, gas, kerosene and 

air temperature) 
 
Energy indicator 
Basically, energy indicator in the database is final (secondary) energy consumption. Table 2-26 shows 
the energy conversion coefficients for different kinds of energy sources [12]. Energy end users were 
classified as shown in Table 2-27. The classification has three levels. There are ten categories in the 
first level, which are 1) total energy consumption, 2) heating, cooling and ventilating (HVAC), 3) 
domestic how water (DHW), 4) lighting, 5) kitchen, 6) refrigerator, 7) entertainment and information, 
8) housework and sanitary, 9)others, and 10) generation (e.g. photovoltaic power generation). The ten 
categories were classified into more detailed, which is the second level. For example, hot water supply 
is divided into hot water supply for bathroom, for kitchen and others. Finally, the third level is the 
energy consumption for individual household electrical appliance. In addition, rated electricity 
consumption and stand-by power of the electrical appliances were divided if possible.  
 

Table 2-26: Conversion coefficients of energy sources 
Energy Source Conversion Coefficient

Electricity 3.6 MJ/kWh
Kerosene 36.7 MJ/L
LPG 50.2 MJ/Nm3

City Gas (4A~7C) 20.4 MJ/Nm3

City Gas (12A~13A) 45.9 MJ/Nm3
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Table 2-27: Energy end users  
First level Second level Third level Energy source First level Second level Third level Energy source

Purchased power ○Secondary energy Television Electricity
Power selling ○Secondary energy Vedio Electricity
City gas ○Secondary energy DVD player Electricity
Kerosene ○Secondary energy Audio/radio casette Electricity
Wood, etc Game Electricity
Air-conditioner ○Electricity BS/CS turner Electricity
Gas air-conditioner Gas Tuner Electricity
Electrical fan Electricity CATV terminal Electricity
Dehumidifier Electricity CATV booster Electricity
Others (heat exchanger, etc) Electricity Wireless lan (main and extension) Electricity
Air-conditioner ○Electricity Electrical piano Electricity
Gas air-conditioner Gas Computer Electricity
Kerosene air-conditioner kerosene Telephone and fax Electricity
Electrical floor heating ○Electricity Telephone extension Electricity
Gas floor heating Gas Entry phone Electricity
Kerosene floor heating kerosene TV door phone Electricity
Kotatsu (Japanese electrical heating table) Electricity Telephone security unit Electricity
Electrical carpet Electricity Telephone battery charger Electricity
Gas fan heater Gas Cellphone battery charger Electricity
Kerosene fan heater kerosene Shredder Electricity
Kerosene stove kerosene Security Home security Electricity
Electrical heater (panel heater, etc) Electricity Washing machine Electricity
Heat storage heater Electricity Gas washing machine Gas
Humidifier Electricity Cloth dryer Electricity
Electrical blanket Electricity Gas cloth dryer Electricity
Others Electricity Iron Electricity
24hours ventilation system ○Electricity Vacuum Electricity
Local ventilation Electricity Sewing machine Electricity
Air cleaner Electricity Futon dryer Electricity
Electrical water heater ○Electricity Trousers press Electricity
Gas water heater Gas Warm-water cleaning toilet seat Electricity
Kerosene water heater kerosene Dryer Electricity
Others Electricity Bathroom heating (dryer) Electricity
Electrical water heater Electricity Gas bathroom heating (dryer) Gas
Gas water heater Gas Electrial shaver Electricity
Kerosene water heater kerosene Electrical tooth brush Electricity
Others Electricity Inhaler Electricity
Electrical water heater Electricity Electrical mosquito swatter Electricity
Gas water heater Gas Electrical spetic tank Electricity
Kerosene water heater kerosene Medical care Medical machine Electricity
Others Electricity Electrical shutter Electricity
Lighting Electricity Tank Electricity
Table lamp Electricity Unclear iterms Electricity
Electrical cooker (IH and 200V equipment) ○Electricity Photovaltaic power generation Electricity
Microwave Electricity Solar water heater Electricity
Electrical oven Electricity
Gas oven Gas
Rice cooker Electricity
Gas rice cooker Gas
Pot Electricity
Table stove/plate Electricity
Toaster Electricity
Coffee maker Electricity
Juicer/blender Electricity
Home bakery Electricity
Gas cooker Gas
Refrigerator ○Electricity
Range hood Electricity
Dishwasher Electricity
Gas dishwasher Gas
Water filter Electricity
Rice mill Electricity

5) Kithchen

Cooking

9) Generation Generation

the items with "○" are necessary items

Others

Ventilation
 (exclude range

hood)

3) Hot water supply

Hot water supply
(bathroom)

SanitaryHot water supply
(kitchen)

Hot water supply
(others)

8) Others Others
4) Lighting Lighting

1) Total energy
consumption

Household

6) Entertainment
 and

information

Entertainment
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2.5.3 Investigation results 

Annual energy consumption 
Figure 2-109 and Figure 2-110 show the annual energy consumptions for the 80 households during 
one year from December 2002 to November 2003 and from December 2003 to November 2004, 
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respectively. The blanks in the figures indicate that measurements were not carried out in such 
households. The results show that energy consumption varied widely in different households. The 
maximum value was about twice of the minimum value even in the same district. In general, annual 
energy consumption decreased when the household goes southward. In Hokkaido, Tohoku and 
Hokuriku, where have cold winters, annual energy consumptions were larger than other districts. 
Besides, energy consumptions for HVAC and DHW accounted for a large ratio (about 80% of the total 
energy consumption) in these districts. In addition, energy consumption for HVAC and DHW also 
varied widely in different households. The maximum value was about three or four times of the 
minimum value. The differences of energy consumptions for HVAC and DHW are considered to 
result in the differences of total energy consumption in residential buildings. 
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Figure 2-109: Annual energy consumptions for the 80 households (Dec. 2002 ~ Nov. 2003) 
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Figure 2-110: Annual energy consumptions for the 80 households (Dec. 2003 ~ Nov. 2004) 

 
Comparison between the first year and the second year 
Figure 2-111 shows the comparison of the annual energy consumptions (Left: Energy consumption for 
HVAC; Right: Total Energy Consumption) between the first year (Dec. 2002 ~ Nov. 2003) and the 
second year (Dec. 2003 ~ Nov. 2004). The results show that, although energy consumptions in these 
households had some differences between the first year and the second year, the differences were not 
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obvious. This indicates that residents have a stable lifestyle and they do not like to change much. On 
the other hand, households in Tohoku district cooperated to live an energy-saving lifestyle (e.g., 
shortening heating/cooling period, appropriating setting temperature, reducing heating/cooling space, 
unplugging electrical appliances when not using, etc.) in the second year. Annual energy consumption 
in such households became smaller compared to the first year, and the reductions in two of the 
households were very obvious. Such results indicate that lifestyle of the residents is an important 
factor to save energy in residential buildings.  
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Figure 2-111: Comparison between the first year and the second year  

(Left: Energy consumption for HVAC; Right: Total Energy Consumption) 
 
2.5.4 Statistical analyses 

Introduction 
The investigation results showed that energy consumptions varied widely in Japanese residential 
buildings. In order to find out what factors and how they influence on residential energy consumptions, 
statistical analyses were carried out with the results of 72 households with full energy consumption 
information. In the statistical analyses, the dependant variables are the energy consumptions for 
different end uses, and the explanatory variables are the considerable factors as shown in Table 2-28. 
When selecting the explanatory variables, the following matters should be well examined so as to 
ensure the precision of the analyses.  

• Do Not select any useless factor 
• Do Not miss any useful factor 
• Do Not select highly correlated factors so as to avoid the problem of multi co-linearity.  

With these considerations, explanatory variables which can be gained from the investigations were 
used in the analyses, while those factors exceeded the investigation items were not considered.  
Three kinds of statistical methods were used in the analyses, which are multiple regression analysis, 
neural network, and quantification method. The models of multiple regression analysis and neural 
network are used to predict the relationships between dependent variable and explanatory variables in 
linear and non-linear way, respectively. On the other hand, quantification method is used to analyze 
the influences of qualitative factors, which are described by texts, e.g. district, building type, etc.  
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Table 2-28: Statistical methods 

NO. Factor Unit
Multiple

Regression
Analysis

Neural
Network

Quantification
Mothod ⅠⅠⅠⅠ

1 District - - - ○

2 Type of the Building - - - ○

3 Age of the Building [Years] ○ ○ ○

4 Floor Area [㎡] ○ ○ ○

5 Coefficient of Heat Loss [W/㎡K] ○ ○ ○

6 Equivalent Area of Interstice [c㎡/㎡] ○ ○ ○

7 CDD22-24 [℃・Day] ○ ○ ○

8 HDD14-14 [℃・Day] ○ ○ ○

9 Living Room Temperature in Summer [℃] ○ - ○

10 Living Room Temperature in Winter [℃] ○ - ○

11 Number of Family members [Person] ○ ○ ○

12 Number of Electrical Household [Piece] ○ - ○  
 
2.5.5 Result 

Multiple regression analyses 
The dependent variable is annual energy consumption (GJ/Year), and the explanatory variables are 
shown in Table 2-29. Floor area had the largest standardized partial regression coefficient, followed by 
heating degree day and living room temperature in winter, which indicated that floor area, heating 
degree day and living room temperature in winter had greater effect on annual energy consumption, 
compared to other factors. Figure 2-112 shows the relationship between predicted values and observed 
values. The coefficient of determination was 0.72, which indicated that energy consumptions in 72% 
of the households can be explained by the multiple regression analyses. 
 

Table 2-29: Results of multiple regression analyses 

Factor
Partial Regression

Coefficient
Standardized Partial

Regression Coefficient

Building Age [Year] -0.99 -0.18
Floor Area [㎡] 0.36 0.48

Coefficient of Heat Loss [W/㎡・K] 2.71 0.12
Equivalent Area of Interstice [c㎡/㎡] 0.35 0.03

Family Members [Perspon] 3.57 0.14
CDD22-24 [℃・Day] -0.03 -0.10
HDD14-14 [℃・Day] 0.01 0.38

Living room Temperature in Summer [℃] 1.15 0.09
Living room Temperature in Winter [℃] 2.49 0.27
Electrical Household Appliances [Piece] 0.08 0.03

Constent -103.79  
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Figure 2-112: Relationship between the predicted values and observed values 

 
Neural network 
Figure 2-113 shows the input and output layers in neural network analyses. In neural network, the data 
will be divided into training data and validating data, where training data is used to analyze how 
explanatory variables influence dependent variable, while validating data is used to validate the 
analyses. In this research, one household was randomly selected as validating data from each district 
and the rest 66 households were used as training data. Table 2-30 shows the comparisons between 
training data and validating data. Compared to the training data, the validating data had smaller floor 
area, equivalent area of interstice, but higher living room temperatures and annual energy consumption. 
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Figure 2-113: Input and output layers in neural network 

 
Table 2-30: Training data and validating data 
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MAX MIN AVE MAX MIN AVE
No.1 District ー ー ー ー ー ー

No.2 Building Type ー ー ー ー ー ー

No.3 Building Age [Years] 35.0 1.0 5.5 13.0 1.0 5.7
No.4 Floor Area [㎡] 240.0 46.0 122.9 159.0 70.0 108.2

No.5
Coefficient of Heat Loss
[W/㎡・K]

7.7 0.6 2.4 3.2 1.3 2.2

No.6
Equivalent Area of Interstice
[c㎡/㎡]

13.3 0.2 2.8 2.9 0.3 1.4

No.7 Family Members [Person] 6.0 2.0 3.6 5.0 2.0 3.5
No.8 CDD[D22-24] 625.5 0.0 118.1 245.3 0.0 107.0
No.9 HDD [D14-14] 3220.7 5.4 1525.5 3220.7 623.2 1597.6

No.10
Living room Temperature in
Winter [℃]

24.9 11.1 18.5 23.5 17.3 19.6

No.11
Living room Temperature in
Summer [℃]

30.9 21.9 27.4 28.7 26.8 28.0

No.12
Electrical Household
Appliances [Pieces]

68.0 11.0 33.9 51.0 21.0 34.7

No.13
Annual Energy
Consumption [GJ/Year]

159.8 11.2 52.8 123.8 29.0 65.1

NO. Factor
Training Data (66Households) Validating Data (6Households)

 
 
The Figure on the left hand side of Figure 2-114 shows the relationship between predicted values and 
observed values in neural network model with training data, while the right hand side of Figure 2-114 
shows precision of the neural network analyses with validating data. The coefficient of determination 
in the validating model was 0.88, which indicated that the model in fact correct in 88% of the times. 
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Figure 2-114: Results of neural network. 
 
Figure 2-115 shows the importance of input layers to annual energy consumptions. It indicated that 
heating degree day, family members and coefficient of heat loss had more importance to annual 
energy consumptions in Japanese residential buildings compared to other factors. 
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Figure 2-115: Importance of input layers to annual energy consumptions 

 
Quantification method I 
In the quantification method type I, dummy variables are used and analyzed by multiple regression 
method. Factors were divided into several categories and the category weights were calculated by 
minus the average value.  
Table 2-31 shows the results when the dependent variable is annual total energy consumption. 
Numbers on the right hand side were Partial Correlation Coefficients of the factors (PCC). The partial 
correlation coefficients of district, floor area, and family members were larger than other factors, 
which indicated that these three factors had greater effect on annual energy consumption compared to 
others. This table also shows that energy consumption decreased as the household goes southward. 
The difference between Hokkaido and Kyushu was about 70GJ/Year. Households located in Hokkaido 
with floor area larger than 120m2, and have more than four people in their home consumed most 
energy per year. 
 

Table 2-31: Quantification method I: (Dependant Variable: annual total energy consumption)  
 
2.5.6 Conclusions and discussions  

The national database of a two-year 
investigation in the residential buildings in 
Japan shows the following results. 
Energy consumptions of the households in 
Hokkaido district are the largest, followed 
by Tohoku district and Hokuriku district. 
These three districts have long and cold 
winter, heating and hot water supply are the 
largest energy user there.  
Annual energy consumption did not change 
much between the first year and the second 
year, due to the residents are willing to 
have a stable lifestyle. However, in the 
households where the residents cooperated 
to live an energy-saving lifestyle in the 
second year, energy consumptions were 
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smaller than in the first year. Lifestyle is an important factor that influences energy consumption in 
residential buildings. 
Besides air-conditioner, hot water supplier and refrigerator, television is the largest energy user among 
the household electrical appliances in most of the households. In some households, electromagnetic 
cooker, warm-water cleaning toilet seat, washing machine (with dryer function) or dishwashing 
machine consumed more energy than other appliances. Energy saving priorities should be given to 
these appliances.  
Statistical analyses using three different statistical methods have been carried out to understand how 
the factors influence energy consumptions in Japanese residential buildings. Multiple regression 
method was used to predict energy consumption in residential buildings with a set of already-known 
individual variables (floor area, HDD, CDD, etc.), by using linear functions, while the method of 
neural network was used to analyze the non-linear relationship between energy consumption and 
individual variables. On the other hand, quantification method analyzed the influence of qualitative 
variables (e.g. district, building type, etc.) by introducing dummy variables. Due to the different 
analysis approaches of the three different statistical methods, the influences of individual variables 
were different in three methods. However, heating degree day (HDD) has been clarified as an 
important factor that influences annual energy consumption by all the three statistical methods. 
Besides that, district was the most important qualitative factor, and the considerable reason is because 
different districts reflect different heating periods and heating areas.  
However, the set of individual variables used in statistical analyses should be further discussed. For 
example, factors related to human behaviors (e.g. operating schedule of individual heating and cooling 
equipment, setting temperature of hot water used for bath and/or shower, utilization of natural energy 
(e.g. photovoltaic system, natural ventilation), etc.) should be taken in to account. Researches and 
analyze methods focus on the influence of human behaviors on residential energy consumption should 
be developed in the soon future.  
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2.6 Experience 6: Heating consumption assessment and forecast of existing buildings: 
investigation on Italian school buildings 

(Stefano Paolo Corgnati, Federica Ariaudo, Marco Filippi) 
 
2.6.1 Introduction 

The study here presented is part of the long-term analysis of actual energy consumption, aimed at 
monitoring, analyzing and forecasting energy consumption of a school building stock. Results can be 
also useful for the definition of priorities in building energy upgrading.  
The provisional models for energy forecasting should be robust and simple, based on easily collectible 
data, in order to show with reasonable precision the building stock energy demand tendencies.   
With reference to Figure 2-116 inspired by the outlines of IEA- ECBCS ANNEX 53, the investigation 
here presented can be referred to the box related to large building stocks, where seasonal 
consumptions are available and analyzed.  
 

 
Figure 2-116. Building sample dimension vs Time frequency of energy consumptions (from hourly 

data to annual data) 
 
The analysis is firstly carried out in order to define a specific heating energy consumption indicator for 
each school building. A simplified model, defined and proposed by a previous research work 
(Corgnati et al., A method for heating consumption assessment in existing buildings: a field survey 
concerning 120 Italian schools, Energy and Buildings, Vol. 40 pp. 801-809, 2008),  is applied and then 
verified for the energy consumption forecast. 
In particular, the investigation is carried out through the following steps: 

1. measured data collection and analysis of heating consumptions for each single building of the 
investigated stock; 

2. verification of the heat generation efficiency for each analysed heating plant; 
3. definition of actual and conventional occupancy hours of the buildings; 
4. definition of the energy performance indicator for each single building  
5. energy consumption forecast for each building and for the building stock. 

 
Moreover, the validity of the performance index proposed in the former research activity is verified, 
and the results of the previous investigation campaign are compared with the ones obtained from the 
new data set consequently to energy retrofit actions on the buildings.  
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2.6.2 Database characteristics 

A building sample of 103 schools is investigated, located in the Province of Torino. Diagram in Figure 
2-117 shows the frequency distribution of the building sample on the basis of the gross heated volume. 
 

 
Figure 2-117. Frequency distribution of the building sample on the basis of the gross heated volume 

 
The diagram of Figure 2-117 shows that the sample is divided within an extremely wide interval, with 
heated volumes ranging from under 5000 m3 to over 75000 m3. 
Moreover, Figure 2-118 shows the frequency distribution of the building sample on the basis of the  
Italian conventional heating Degree Days (in accordance to the Italian Law D.P.R. 412/93), calculated 
with an indoor temperature of 20 °C. All the involved buildings are located within the climatic zones E 
(Degree Days between 2100 and 3000) and F (Degree Days over 3000), that are the two zones coldest 
climatic zones in Italy.  
 

 
Figure 2-118: Frequency distribution of the building sample on the basis of the Italian conventional 

heating Degree Days (Italian Government 1993) 
 
As most of the buildings are located in the city of Torino (2617 °C d), more than half of the sample 
falls within the area with conventional Degree Days between 2600 °C d and 2700 °C d. 
Diagram in Figure 2-119 shows the distribution of the sample according to the type of fuel used for the 
heating system (in the case of methane, a further division into traditional and condensing boilers has 
been made). 
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Figure 2-119: Frequency distribution of the building sample according to the type of fuel used for 

heating system. 
 
The data collected for each building in order to characterize its heating consumptions and, then, to 
define the heating consumption indicator are: 
building location; 
geometric data (gross heated volume, floor useful surface); 
monthly metered supplied energy for heating for three consecutive heating seasons; 
monthly metered primary energy consumption for heating for three successive heating seasons;  
conventional heating Degree Days of building site; 
measured heating Degree Days in building site for each of the examined seasons;  
conventional (standard) heat delivery hours of the heating system; 
actual heat delivery hours of the heating system for each examined season;  
type of fuel for the heat generator. 
 
As mentioned, data referring to three heating seasons have been considered.  
The number of conventional heating delivery hours for the analyzed building stock has been set at 
1,098 hours/year, according to the indications of the energy manager on the basis of a standard 
outdoor climate and a standard use of the building. On the contrary, as regards the actual delivery 
hours, they were monitored by the energy manager: as an example, Figure 2-120 presents their 
frequency distribution for the sample with reference to the first analyzed heating season. 
 

 
Figure 2-120: Frequency distribution of the building sample on the basis of the actual number of 

delivery hours for the first analysed heating season.  
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The monthly efficiency of the heat generator has been calculated for every building through the 
following equation: 

p

s

E

E
=η

            
where: 
η = average monthly efficiency of the heat generator; 
Es = Monthly metered supplied energy; 
Ep = Monthly metered primary energy. 
 
Also the average seasonal efficiency of the heat generator has been evaluated, using the seasonal 
metered energies. 
In order to verify the consistency of the metered values and as a consequence of the efficiency, the 
calculated monthly efficiency was checked. When the ratio between monthly supplied energy and 
monthly primary energy is over 0,90 (1,01 in the case of condensing boilers), the obtained efficiency 
value is considered as not reliable, due to a probable malfunction in the heat recording system. The pie 
chart in Figure 2-121 shows the consistency of reliable efficiency data.  
 

 
Figure 2-121: Consistency of reliable efficiency data related to the efficiency of the heat generator  

 
Only 9% of the data presents an anomalous efficiency value. For the cases when the efficiency value 
resulted as unreliable, some standard efficiency values, obtained from an analysis performed on the 
collected data, have been defined: typically 0,83 for traditional systems, and 0,96 for condensing 
boilers have been used.  
  
2.6.3 Method 

In order to carry out a comparison among data obtained from different buildings and/or different 
seasons, it is necessary to define an energy indicator referred to the heated volume and which 
neutralizes the effect of any changes among buildings in the heat delivery period, and climate. To this 
aim, a “conventional” energy performance indicator, already used in the previous study, has been 
evaluated: such indicator is defined as the ratio between the metered energy supplied by the heat 
generator (QP) and the gross heated volume (V), referred to the conventional heating Degree Days of 
the site (DDc), and to the conventional hours of heat supply (dc): 

a

c

a

c
cs d

d
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DD

V

QP
QP ⋅⋅=,

          (4) 
where: 
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DDa = actual heating Degree Days of the site; 
da = actual heat delivery hours during the heating season; 
QP = seasonal metered energy supplied by the heat generator. 
 
Such indicator has been calculated for each building, referring to climatic conditions and conventional 
hours of heat supply during each considered heating season, in order to make possible comparisons at 
the same conditions, to show trends, or to highlight anomalies.  
As an example, Figure 2-122 describes the trend of the indicators calculated each heating season for 
building n° 1. 
 

 
Figure 2-122: Trend of the “conventional” energy performance indicator QPs,c calculated each 

consecutive heating season for building n° 1  
 
The diagram shows that the indicator presents almost the same value for season 1 and 3. On the 
contrary, the consumption indicator for the heating season 2 is significantly higher: even if during 
season 2 the climate was far less rigorous than usual (it was a “warm” winter), in practice such 
climatic variation did not lead to a proportional decrease in consumption, as highlighted by the high 
value of conventional consumption. This may be due to poor control strategies on the heating systems, 
a reduced efficiency of the systems with low-loads, and/or to tendency in slightly increasing the indoor 
temperature set-points with increasing of outdoor temperature. 
 
2.6.4 Results and discussion 

Figure 2-123 shows the frequency distribution of the consumption indicator for a representative season 
of previous research activity, and for a representative season of current research activity (so after the 
application of energy retrofit actions on the buildings).  
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Figure 2-123: Frequency distribution of the “conventional” energy performance indicator QPs,c for a 

representative season of the previous research activity and of the current research activity 
 
This figure confirms that the retrofit interventions planned after the first investigation campaign have 
evidently led to an energy efficiency improvement in the whole sample. In fact, while in the first case 
about 90% of the buildings had a consumption indicator below 80 kWh/m3, in the second case about 
85% of the buildings show a consumption indicator below 40 kWh/m3: exactly half of the value 
obtained from the previous study.  
Moreover, in the first case the average consumption indicator value was 38 kWh/m3, while this value 
is now 29 kWh/m3. Assuming an average room height of 3 m, the average consumption indicator 
value referred to the surface unit is 87 kWh/m2, which is definitely lower than the value of 115 
kWh/m2 obtained from the previous estimation.  
The diagram in Figure 2-124 shows the comparison between the actual measured value and the 
performance indicator value for every building.  
The performance indicator has been than used to forecast the consumption of the following heating 
season. As a consequence, it is necessary to redefine the reference value according to the actual 
conditions of the analyzed season, and the following equation has been used: 

c

a

c

a
cscs d

d

DD

DD
QPQP ⋅⋅= ,*,          

where QPs,c is the energy performance indicator for each building, determined as previously described.  
 

 
Figure 2-124: Comparison between the actual measured value and foreseen valued from QPs,c  
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The figure confirms the quite good level of accuracy of the energy performance indicator: even if a 
simple model has been used, the determination coefficient value R2 is 0,74.  
The trend line does not coincide with the bisector of the diagram, which means that the energy 
performance indicator slightly overestimates the actual consumption value.  
One of the main physical reason for such result is that the variables describing the model do not take 
into account heat gains. Nevertheless, a little overestimation can be considered acceptable when the 
consumption forecast is used for “energy contract” purposes because it provides a margin of safety of 
primary importance. 
 
2.6.5 Conclusions 

The present study, focused on school buildings, aimed at analyzing actual heating energy 
consumptions and evaluating an energy performance indicator for consumption analysis and forecast 
of the examined building stock.   
The heating energy consumption has been investigated firstly through a comparison between the 
consumptions obtained from a previous study on the same buildings and the ones related to the current 
situation. This analysis has demonstrated that the energy re-qualification actions planned and 
implemented on the buildings according to the results of the previous study, led to an improvement in 
the energy quality of the analyzed building block.  
Then the energy indicator, based on a normalization of the seasonal metered energy consumptions, has 
been calculated and verified. The indicator resulted reliable, both for the description of the actual 
consumption in comparison with reference values, and for the future consumption forecast.  Moreover, 
it turned out to be useful to identify reference values for the heating consumption of this school 
building stock.  
Overall, this paper presents a model, indicators and a method for energy consumption analysis and 
prediction in a public building stock. In this context an accurate energy consumption prediction is very 
important in order to allocate in advance necessary funds for energy retrofit of schools. Therefore it is 
important that these models are easy to understand for all those involved in management of analyzed 
building stock. In school building stock, where heating is the main energy use, consumption analysis 
involve a not excessively complex system, so prediction accuracy could be higher than in consumption 
analysis of building stock where, for example, occupant adaptive actions are more free.  
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2.7 Experience 7: Building energy performance evaluation using daily consumption data in 
nine individual office buildings in Spain 

(Stoyan Danov, Jordi Carbonell, Jordi Cipriano. CIMNE, Spain) 
 
 
2.7.1 Subject of the work / Abstract 

The subject of work is the analysis of the energy performance of nine office buildings in Spain, 
corresponding to the climatic zone “D” according to the Spanish Building Technical Code. The 
dimensions of the buildings vary between 340 and 4820 m2. 
A method for determining the total heat loss coefficient, the effective heat capacity and the net solar 
gain of a building is presented. The method uses a linear regressions approach based on daily energy 
consumption combined with readily available meteorological data.  
The effective heat capacity of the building is evaluated by correlating the energy consumption and 
outdoor temperature changes from the previous day. The net solar gain of the building is assessed by 
analyzing the data separated into groups by amount of daily solar irradiation. Corrected total heat loss 
coefficient is determined by explicitly including in the building’s energy balance the accumulated heat 
and the solar gain. 
The method has been applied to the analysis of nine public buildings in Spain. An improvement of the 
estimated heat loss coefficient due to the corrections is observed. The effective heat capacity 
normalized by the building area is shown to be a useful indicator of the building operation, detecting 
continuous or intermittent heating. 
The estimated parameters in this study can enable specific benchmarking, detecting opportunities for 
energy savings and evaluating their potential. With the increasing implementation of smart metering 
technologies, the method is promising for application to the analysis of large building stocks. 
   
2.7.2 Aim of the work  

In order to improve the energy efficiency in existing buildings and to design appropriate energy-saving 
measures, it is important to analyze separately the influence of the building (envelope, energy systems) 
from the influence of the human behavior factors (heating/ventilating choice, system control).  
Ideally, the analysis needs to establish weight of each of the following key factors in the building’s 
total energy consumption: envelope quality; the building use activities; the systems quality and 
control; occupant behavior factors such as heating and ventilating choice. This detailed knowledge 
requires expensive monitoring which, in practice, is only possible in a small fraction of the total 
existing building stock due to cost criteria.  
 
Another approach is the use of energy indicators, usually calculated from billing data sources. 
Indicators are used for benchmarking to evaluate the savings potential and also the impact of 
efficiency measures already applied. In this case, the level of detail of the analysis depends on the type 
of indicators used and on how well they are able to represent the aforementioned key factors for the 
energy consumption. Furthermore, benchmarking and modeling can be integrated in the same analysis 
by studying the characteristic building factors with artificial neural network (ANN) techniques [1]. 
A commonly used indicator for the combined performance of the building and its occupants is the 
energy use intensity (EUI), or energy consumption per square meter. For characterization of the 
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building envelope, the total heat loss coefficient ( totK ) including both the transmission and ventilation 

losses of the building, is widely used [2],[3],[4]. 
 
The totK  is a quantification of the steady state thermal performance of the building. As the frequency 

of the data for analysis increases, to the level of using daily data for example, the dynamic 
performance deserves more attention.  One of the ways to model the dynamic effects is the effective 
heat capacity, defined in [5] as the part of the total heat capacity of a building component that 
participates in dynamic heat exchange with the environment. In the same reference different analytical 
models for determining this are presented, all of which require information about the building element 
properties and dimensions. 
The present study aims to analyze building energy performance from the starting point of energy 
consumption data availability without detailed knowledge about the building, calculating the effective 
heat capacity and the net solar gain of the building. 
 
2.7.3 Data used and database characteristics 

The study has been performed on data from 9 public buildings in Spain corresponding to the climatic 
zone “D” according to the Spanish Building Code. The data has been obtained, from monitoring in the 
period of April 2009 to March 2010, under a commercial contract with privacy clauses which impede 
the citation of the exact location.  Consequently, the data is used here only as an illustration of the 
methodology.  
 
The original database contains data with 15 minute sampling frequency, with separation of 
consumption of fuel for heating and total electricity consumption of the building. The energy 
consumption information has been complemented with readily available meteorological information at 
10 minute frequency, taken from nearby meteorological stations. From these data the outdoor 
temperature and the global solar irradiation on a horizontal surface have been used. In some cases the 
physical distance from the building to the meteorological station is up to 20 km which can give place 
to some micro-climatic deviations for the real buildings.  
 
Additionally, information about the typical number of people occupying the building each hour is 
available from a questionnaire filled by the building operator. 
Although the original database contains data with higher frequency, daily integrated values for the 
energy consumption and the solar irradiation, and average outdoor temperature have been used in the 
analysis. The reason is that daily data is better correlated with respect to dynamic and solar radiation 
effects than higher frequency data due to the thermal inertia of the building. The data with higher 
frequency in this study is used only for more in-depth view of the building use in order to explain the 
results from the daily data analysis. 
 
2.7.4 Method 

The global energy balance over a building is given by: 

solpelhsdynloss QQQQQQ +++=+
 (1) 

Where lossQ  is the energy loss through the building envelope by transmission and ventilation, dynQ is 

the dynamically stored/released heat, hsQ is the energy provided from the heating system. The last 
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three terms on the right are the heat gains respectively from electric use ( elQ ), metabolic energy from 

people ( pQ ) and solar energy gains (solQ ). Both parts of the equation represent the total heating need 

of the building for the studied period (Q). 
For daily energy balance dynQ cannot be neglected, as the time constant of buildings is in the 

magnitude of days. Thus dependence on the previous day’s operation and outside temperature exists. 
 
 
2.7.5 Determining of the total heat loss coefficient 

The heat losses of the building are proportional to the inside-outside temperature difference, so we can 
re-arrange equation (1) in terms of power as: 

dynsolpelhsoitot QQQQQTTK &&&&& −+++=− )(
 (2) 

Where totK
 
is the total heat loss coefficient of the building including both transmission and ventilation 

losses, iT  and oT  are respectively the average internal and external temperatures. 

Using daily data for the energy consumption for heating, electricity, occupation and average outside 
temperature, the totK  can be determined from (2) by energy signature, see Figure 2. This technique 

does not imply the knowledge of the internal temperature (implicitly supposed constant) and evaluates 
the heating loss in function only of the outside temperature. As is usual in this kind of modeling, solQ&  

and dynQ&  are not known, so these terms are omitted and totK  is estimated from the known terms 

instead of the real heat losses. As a result, the heat loss coefficient is more imprecise and does not 
reflect the real characteristics of the envelope. Accounting for the dynamic effect and the solar gains 
will lead to improved linearity of the relation between heat loss and temperature, to obtaining of 

higher determination coefficient (2R ) for the regression, and thus more precise estimates of totK . 

 
2.7.6 Evaluation of the dynamic effect 

The dynamic contribution to the total energy for heating is due to the thermal inertia of the building 
and on a daily basis depends on the variation of the average building mass temperature with respect to 
previous days.  
As the average building mass temperature variation cannot be determined with the available 
information (energy consumption, occupation, meteorological data), the dynamic effect can be 
evaluated with respect to the variation of the outside temperature.  
The dynamic effect on the heating energy demand is related to the effective heat capacity of the 
building effC  and can be determined from:  

)( 1−−= k
o

k
oeffdyn TTCQ

 (3) 
where k

oT  and 1−k
oT  are the average outside temperature of the actual and previous day respectively. 

The effective heat capacity is a quantification of the total heat capacity of the building that participates 
in the dynamic heat exchange between building and environment. The effective heat capacity can be 
defined and calculated on basis of admittance [5], [6]. The admittance is the quotient of the heat flux 
and the temperature oscillation at one surface of a building component. The effective heat capacity of 
the component is determined as the amplitude of the admittance divided by the oscillation frequency. 
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Applied to the overall building using daily integrated data, the admittance can be approximated from 
the oscillation of the heating load in the 24h period to the oscillation of the average outside 
temperature for the same period. 
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Dividing the admittance from (4) by the oscillation frequency (1/24h) we obtain the effective heat 
capacity of the building: 
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where 1−kQ  and kQ  represent the total heating need (including energy from heating system and 

gains) for two consecutive days, k-1 and k, calculated from (1), without considering the dynamic and 
solar terms.  
Equation (5) is not an exact equation and effC  is determined inversely as the slope of the regression 

line between the nominator and denominator, see Figure 2-125. It is a negative slope line, ideally 
passing through the centre of the coordinate system. In order to evaluate effC  considering only the 

influence from the previous day, from the data set have been excluded the days for which the energy 
consumption in the previous days is very low or atypical, for example on Mondays or on the first day 
after the holidays which reflect the dynamic heat effect of more than one day period. These days 
should be analysed separately. 

 
Figure 2-125: Plot for determining of effC  (Building #7) 

 
Analysis of the building solar gain 
In the present work, centered in the analysis of the building energy use from daily data energy 
consumption data and without detailed building description, the focus has been placed on the relation 
between the global daily solar irradiation on a horizontal surface and the total heating demand of the 
building.  
The solar energy gain contributes to the heating load and is implicitly reflected in the energy 
requirements for heating. In thermally controlled buildings it can be supposed that higher solar gain 
reduces the heating necessity of the building. With lower, or nearly zero solar gain, all the necessary 
heating is covered by the consumed commercially supplied energy. On the other hand, solar gain is 
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related to the available global solar irradiation during the day and can be expected to increase with 
higher solar irradiation.  
 
From the point of view of analysis of data integrated in a 24h period (including day and night), with 
the increased amount of daily irradiation the diurnal solar gain will increase. But, this effect will be 
partly offset by the increased radiation losses during the night due to the lower sky temperature during 
clear nights, supposing that the coincidence of clear days with clear nights within 24h period is highly 
probable. These opposite effects will finally give place to a net solar gain or loss, which is the 
difference between the energy gained during the day and the increased losses during the night. The 
result for each particular building will depend on its location, design, orientation and surroundings. 
In order to evaluate the influence of the solar irradiation on the total heat demand, the whole data set 
has been divided in four subsets which correspond to different ranges of the daily solar irradiation as 
shown below. 
Set 0: Solar Irradiation level < 800 Wh/m2 
Set 1: 800 ≤ Solar Irradiation level < 2000 Wh/m2 
Set 2: 2000 ≤ Solar Irradiation level < 3200 Wh/m2 
Set 3:  Solar Irradiation level ≥ 3200 Wh/m2 
 
The considerations for deciding the division into ranges have been first to assure sufficient data points 
within each range, and secondly, to provide sufficient step-change in the solar irradiation level as to 
assure appreciable differences in the output of the analysis.  
For each of the subsets, a linear regression between the heat load and the outdoor temperature has been 
obtained. In order to smooth extraneous effects in the regressions and impose physical meaning by 
fixing zero energy consumption for the same outdoor temperature for all of the subsets, the regression 
lines are generated with the constraint of fixing a common point of the regression lines on the 
temperature axis. As a common point, the cross-point of the regression line obtained with the whole 
set of data points has been imposed, as shown in Figure 2-126. 
The particular arrangement of the regression lines shows the global building energy performance 
response to the solar irradiation level and represents a sort of building “solar signature”.  
 

 
Figure 2-126: Total heat loss coefficient determined by energy signature from sub-sets of data for 

different levels of solar irradiation with fixed common point.(Building #3) 
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For the estimation of the solar gain of the building the set of data with minimal solar irradiation (Set0) 
can be considered as the base set for which the solar gain is zero. All the other sets (Set1 to Set3) are 
expected to have higher solar gain, resulting in lower demand of energy for heating.  
 
This means that ideally the regression lines of the sets with higher irradiation level will be situated in 
the graphic lower than those with lower irradiation level, as in Figure 2-126. In the case that the 
regression line of Set0 is situated below the other sets’ lines, this means that with higher irradiation 
level the building requires more energy for heating, or that the net solar gain is negative. 
 
The daily net solar gain of the building can now be estimated (see Figure 2-126) from the difference 
between the regression line of Set0 and the line of the corresponding data set (SetX) to which the daily 
data belongs, calculated for the average outdoor temperature. 

setXsetsol QQQ ˆˆ
0 −=  (6) 

 
2.7.7 Results and discussion 

Total heat loss coefficient 
The total heat loss coefficient for the 9 buildings has been calculated from (2) by linear regression in 
three ways: i) without considering the dynamic and solar terms (without correction); ii) considering 
only the dynamic heat effect calculated from eq. (5) (dynamic correction only ( *

totK )), and iii) 

considering the dynamic and solar heat effects calculated respectively from eq. (3) and (6) (dynamic + 
solar correction ( **

totK )). The results are presented in Table 2-32 calculated per square metre of 

building area in order to allow comparison between them. 
 
Table 2-32: Values of totK  and R2 determined from (a) the initially available data without correction; 

(b) with dynamic correction only; (c) with dynamic and solar correction. 

  without correction dynamic correction only dynamic + solar correction difference 

Building K tot R2 K tot* R2* K tot** R 2**  (K tot**- K tot)/K tot 

  [W/m2K] [ - ]  [W/m2K] [ - ] [W/m2K] [ - ] [%] 

#1 2,111 0,57 2,202 0,59 2,319 0,73 9,86% 

#2 1,586 0,72 1,715 0,77 1,720 0,77 8,45% 

#3 0,927 0,48 0,958 0,52 0,891 0,53 -3,86% 

#4 0,801 0,38 0,940 0,42 0,880 0,40 9,88% 

#5 1,183 0,38 1,209 0,40 1,268 0,47 7,21% 

#6 0,758 0,59 0,786 0,65 0,752 0,69 -0,79% 

#7 1,231 0,68 1,348 0,75 1,328 0,76 7,91% 

#8 1,633 0,68 1,715 0,73 1,685 0,73 3,19% 

#9 1,450 0,75 1,558 0,77 1,729 0,80 19,21% 

 

It can be observed that in practically all of the cases the dynamic correction leads to an improvement 

of the regression from the perspective of the determination coefficient ( 2R ) values. The addition of 
the solar correction further improves the regressions’ quality, except in the case of building #4, where 

the 2R  slightly descends in comparison to the *
totK  determined with the dynamic correction only.  
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The regressions obtained with the dynamic and solar corrections show increased linearity of the 
relationship between the heating need and the outdoor temperature, as expected. The observed 
corrections of the total heat loss coefficient in the majority of cases lead to an increase of the value 
within the range of 10%, except for building #9 where an increase of 19% due to the correction is 
obtained  
 
Effective heat capacity 
The quantity of dynamic heat accumulated and released from the building depends on the magnitude 
of the surrounding temperature variation and the ability of the building to exchange heat with the 
environment. It is limited to the heat capacity of the materials from which the building is built and is 
always lower than this, due to temperature cycling over time.  
 
The effC  in this work is obtained by correlating daily integrated values and reflects how the building 

heat consumption is affected by the changes of the previous day’s average external temperature. If the 
building is intermittently heated during the daily period, it is exposed to larger temperature variations, 
which are related to the external temperature, and the amount of dynamic heat is expected to be larger. 
This has been checked using the available higher frequency consumption data and the calculated effC  

values for the buildings.  
 
Buildings #1, #4, #7, #8 and #9 present clearly intermittent heating pattern where stopping of the 
heating system or reducing its operation to minimum during the non-working hours can be observed. 
Building #2 can also be classified as having intermittent heating although exceptions for some weeks 
exist where the heating has not been stopped during the night. The control pattern of building #5 
presents some irregularities but on the general could be classified as continuous. Figure 2-127 shows 
the hourly consumption profiles of heating energy of four of the buildings, superposing 6 typical 
weekly profiles for each. The profiles represent the heating mode of the buildings and are related to 
the building use. As can be observed from the figure, some of the buildings have well defined control 
patterns, while others have more irregular operation. The profiles have been evaluated qualitatively, 
roughly classifying the heating mode as intermittent or continuous.  
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Figure 2-127: Superposed hourly profiles of fuel consumption for heating: six typical weeks for each 

building are represented. a),  b): intermittent operation; c),  d) continuous operation 
 
In order to obtain comparable values for the analyzed buildings, the effective heat capacity, 
determined from equation (4) has been normalized by the net building area. Cross-comparison 
between the effC  normalized per building area and the detected heating mode is presented in Table 2-

33. The obtained results for the effC  for intermittently heated buildings are considerably higher (3 to 5 

times higher) than those for continuously heated buildings.  This shows clearly that the effC  can be 

used as indicator for the heating mode of the building: continuous or intermittent. 
 

Table 2-33: Summary results. 

Building Net area Av.daily EUI K tot** Solar fraction  Ceff Heating mode 

  [m2] [Wh/m2.day] [W/m2K] [%] [Wh/m2K] [ - ] 

#1 2470 659,13 2,319 -3,79% 22,78 intermittent 

#2 1969 598,18 1,720 1,85% 26,28 intermittent 

#3 340 348,29 0,891 8,41% 4,85 continuous 

#4 3845 474,64 0,880 -6,31% 24,26 intermittent 

#5 500 389,74 1,268 18,69% 6,61 continuous 

#6 516 622,50 0,752 3,91% 6,76 continuous 

#7 2773 468,65 1,328 -2,09% 20,58 intermittent 

#8 1770 666,37 1,685 -4,78% 18,20 intermittent 

#9 4817 416,07 1,729 6,79% 28,91 intermittent 

 
Analysis by level of solar irradiation 
The results from the analysis by level of solar irradiation are presented in Table 2-34. Here we can see 
the corrected total heat loss coefficient, determined by introducing the daily solar gain in the 
buildings’ energy balances, and the solar gain of the buildings for the analysed period (September – 
April), calculated using the method described in point 3.3.   
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For the present method, the precision in determining of the base set with nearly zero solar gain (Set0) 
is crucial as it is the reference for determining of the solar gain of the building and can influence 
strongly the assessment. Analysis with more data is necessary in order to establish the acceptance 
criteria. A minimum number of data points in the subsets, or fixing minimal value of the determination 
coefficient of the regression could be part of the criteria. 
 

Table 2-34: Ktot determined from subsets of data divided by level of solar irradiation and 
calculated solar gain of the building for the analysed period. 

        Ktot by solar irradiation level, [W/m2K] 

Building Ktot set0 Ktot set1 Ktot set2 Ktot set3 Solar gain 

#1 2,31 2,60 2,48 2,11 -3,79% 

#2 1,65 1,63 1,53 1,63 1,85% 

#3 1,08 1,04 0,99 0,81 8,41% 

#4 0,93 1,03 0,98 0,95 -6,31% 

#5 1,65 1,58 1,22 0,81 18,69% 

#6 0,41 0,41 0,39 0,36 3,91% 

#7 1,35 1,40 1,49 1,24 -2,09% 

#8 1,69 1,77 1,77 1,88 -4,78% 

#9 1,60 1,52 1,44 1,33 6,79% 

The results of the analysis in this study show that by using daily integrated data for obtaining the total 
heat transfer coefficient totK  its value, in general, decreases with the increase of the solar irradiation; 

and that the heating demand is lower when the solar irradiation is higher, which is logical because the 
solar gain contributes to the heating.  
 
2.7.8 Conclusions 

The present work suggests a simple linear regression-based method for determining the building’s 
total heat loss coefficient, effective heat capacity and solar gain by using daily energy consumption 
data. Consequently, introducing the calculated dynamic and solar gain terms explicitly into the overall 
energy balance of the building enables an improved total heat loss coefficient to be determined. It has 
been observed that the dynamic heat correction leads to an improvement of the regression between 
energy consumption and outdoor temperature in all of the cases studied. The addition of the solar gain 
correction further improves the regressions, except for one of the buildings where the regression’s 
determination coefficient slightly decreases. 
 
The analysis of the detailed hourly consumption profile of the buildings showed that the thus obtained 
effective heat capacity, normalised by the building area, is closely related to the building’s operational 
pattern and is a clear indicator for intermittent or continuous heating. Intermittently heated buildings 
present effective heat capacity values from 3 to 5 times higher than those heated continuously.  
 
The three parameters - the corrected total heat loss coefficient, the effective heat capacity and the solar 
gain - can be used as performance indicators for specific benchmarking in order to detect underlying 
building operational patterns with available only daily data. In order to establish clearer criteria for 
interpreting of the results, additional studies and analysis of larger number of buildings is necessary. 
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With the increasing application of smart metering in building energy management systems and for 
billing by the utility companies, daily or even hourly consumption data is available, giving the 
possibility to evaluate these energy performance indicators in a large stock of buildings without any 
additional measurement cost. The analysis can be used for preliminary evaluation of the energy saving 
potential and development of energy saving strategies by service companies, or for development of 
additional services for utility companies’ customers. 
 
2.7.9 References 

[1] X. Cipriano, J. Carbonell, J. Cipriano, Monitoring and modelling energy efficiency of municipal 
public buildings: case study in Catalonia region, International Journal of Sustainable Energy Vol. 
28, Nos. 1–3, March–September 2009, 3–18. 

[2] C. Ghiaus, Experimental estimation of building energy performance by robust regression, Energy 
and Buildings 38 (2006) 582-587. 

[3] J.-U. Sjögren, S. Andersson, T. Olofsson, An approach to evaluate the energy performance of 
buildings based on incomplete monthly data, Energy and Buildings 39 (2007) 945-953. 

[4] J.-U. Sjögren, S. Andersson, T. Olofsson, Sensitivity of the total heat loss coefficient determined 
by the energy signature approach to different time periods and gained energy, Energy and 
Buildings 41 (2009) 801-808. 

[5] Jan Akander, The ORC Method – Effective modelling of thermal performance of multi-layer 
building components, PhD thesis, Bulletin no 180. KTH – Building Technology, Stockholm, 
2000. 

[6] G. Johannesson, Active heat capacity  - Models and Parameters for Thermal Performance of 
Buildings. Doctoral Dissertation, Report TVBH-1003, TTH, Lund, Sweden, 1981. 

 
 
 



208 
 
 

2.8 Experience 8: Experimental estimation of building energy performance by robust 
regression (Synthetic contribution) 

(Christian Ghiaus. INSA, Lyon) 
 
2.8.1 Subject of the work  

The subject of work is to estimate the HVAC energy consumption from hourly or daily data by using 
the concept of free-running temperature. 
 
2.8.2 Aim of the work  

Estimation of energy performance indexes, such as the heating curve or the energy signature, requires 
robust regression of the heating losses on the outdoor temperature. The solution proposed in this paper 
is to use the range between the 1st and the 3rd quartile of the quartile – quartile (q-q) plot to check if 
the heating losses and the outdoor temperature have the same distribution and, if yes, to perform the 
regression in this range of the q-q plot. The result is a model that conserves its prediction performance 
for data sets of the outdoor temperature different of those used for parameter identification. The robust 
model gives the overall heat transfer coefficient and the base temperature, and it  may be used to 
estimate the energy consumption for data sets of the outdoor temperature coming from different 
locations or time intervals. 
 
 
2.8.3 Database characteristics  

The database contains hourly data for one school: 
• Consumed fuel energy (hourly) 
• Consumed electrical energy (hourly) 
• Number of occupants in the building (hourly) 
• External temperature (hourly) 
• Global solar irradiation (hourly) 

 
2.8.4 Method/Methods applied for the data analysis  

The energy signature of the building is related to the overall heat loss coefficient of the building (or U-
value) which is the mean thermal transmittance through building envelope to the external environment 
by conduction and by ventilation. Linear regression finds out a relationship between two variables by 
fitting a linear model to observed data. The regression model of heating load as a function of outdoor 
temperature and the frequency of occurrences of outdoor temperature may be used to estimate the 
energy consumption. The assumptions made for linear regression are that the outdoor temperature has 
a normal distribution and that the heating load is a random variable of mean. 
 
The above conditions are not satisfied in real situations: the building is not air-conditioned at a 
constant temperature for the whole range of the outdoor temperature. Consequently, the outdoor 
temperatures which correspond to the heating period does not have a normal distribution. 
 
A robust regression based on quantile – quantile plot is proposed to mitigate this problem (quantiles 
indicate the number of elements of a random variable that are in a given range). 
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2.8.5 Main results 

Many modern buildings are equipped with Building Energy Management Systems (BEMS) that 
control the indoor temperature and record the energy consumption and the outdoor temperature. These 
data may be used to assess the energy performance of the building, such as the heating load as a 
function of the outdoor temperature. This relation may be used to evaluate the overall heat transfer 
coefficient of the building represented by the slope of the heating load. 
 
2.8.6 Related publications 

C. Ghiaus (2006) Experimental estimation of building energy performance by robust regression, 
Energy and Buildings, 38, pp. 582-5987 
 
 
 



210 
 
 

2.9 Experience 9: Equivalence between the load curve and the free-running temperature in 
energy estimating methods (Synthetic contribution) 

(Christian Ghiaus. INSA, Lyon) 
 
Synthetic contribution is missing 
 
2.9.1 Related publications 

C. Ghiaus (2006). Equivalence between the load curve and the free-running temperature in energy 
estimating methods. Energy and Buildings 38 (2006) 429–435 
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2.10 Experience 10: Mining Hidden Patterns from Real Measured Data to Improve Building 
Energy Performance (Synthetic contribution) 

(Zhun (Jerry) Yu, Fariborz Haghighat) 
 
2.10.1 Subject of the work  

In order to mine hidden useful knowledge about building energy performance improvement from 
measured building-related data, we proposed a rational data analysis process and a systematic data 
mining framework within the building engineering domain. For demonstration purposes, a number of 
efficient data analysis methodologies were developed based on the framework to account for the 
interactions between building energy consumption and its influencing factors. These methodologies 
were applied to 80 Japanese residential (both single-family and multi-family houses) which are located 
in six different districts of Japan. 
 
2.10.2 Aim of the work  

• To develop a new data analysis methodology of establishing reliable building energy demand 
models, which are interpretable and can be easily used by common users without a priori 
knowledge in advanced mathematics and statistics. 

• To develop new data analysis methodologies for studying building occupant behavior, such as 
quantitatively identifying the effect of occupant behavior on building energy consumption, 
and identifying occupant behavior that needs to be modified.  

 
2.10.3 Database characteristics  

Number of Buildings: 80 residential buildings distributed in six different districts in Japan 
House type: both single-family and multi-family  
Period: Dec. 2002 to Nov. 2004  
Measured data: energy data + indoor environmental data (temperature+ relative humidity) 
End users: three-level classification  
On-line database: available (energy indicator: secondary energy) 
 
2.10.4 Method/Methods applied for the data analysis  

• Based on the decision tree method, a new methodology for establishing building energy 
demand predictive models was developed. 

• Based on a basic data mining technique (cluster analysis), a new methodology for examining 
the influences of occupant behavior on building energy consumption was developed. 
Moreover, to deal with data inconsistencies, min-max normalization was performed as a data 
preprocessing step before clustering. Grey relational grades, a measure of relevancy between 
two factors, were used as weighted coefficients of different attributes in cluster analysis. 

• Based on three basic data mining techniques: cluster analysis, classification analysis, and 
association rules mining, a methodology for identifying and improving occupant behavior in 
existing residential buildings was developed. End-use loads were divided into two levels (i.e. 
main and sub-category), and they were used to deduce corresponding two-level user activities 
(i.e. general and specific occupant behavior) indirectly. Cluster analysis and classification 
analysis were combined to analyze the main end-use loads, so as to identify energy-inefficient 
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general occupant behavior. Then, association rules were mined to examine end-use loads at 
both levels, so as to identify energy-inefficient specific occupant behavior. 

 
2.10.5 Main results 

• A new methodology for establishing building energy demand predictive models was 
developed. The developed model estimates the building energy performance indexes in a rapid 
and easy way. This method’s advantage lies in the ability to generate accurate predictive 
models with interpretable flowchart-like tree structures that enable users to quickly extract 
useful information. To demonstrate its applicability, the method was applied to estimate 
residential building energy performance indexes by modeling building energy use intensity 
(EUI) levels (either high or low). The results demonstrate that the use of the decision tree 
method can classify and predict building energy demand levels accurately (93% for training 
data and 92% for test data), identify and rank significant factors of building EUI automatically.  

• A new methodology for examining the influences of occupant behavior on building energy 
consumption was developed. To demonstrate the applicability of the proposed method, the 
method was applied to a set of residential buildings’ measurement data. The results show that 
the method facilitates the evaluation of building energy-saving potential by improving the 
behavior of building occupants, and provides multifaceted insights into building energy end-
use patterns associated with the occupant behavior. The results obtained could help prioritize 
efforts at modification of occupant behavior in order to reduce building energy consumption, 
and help improve modeling of occupant behavior in numerical simulation.  

• A methodology for identifying and improving occupant behavior in existing residential 
buildings was developed. In order to demonstrate its applicability, this methodology was 
applied to a group of residential buildings in Japan, and one building with the most 
comprehensive household appliances was selected as the case building. The results show that, 
for the case building, the method was able to identify the behavior which needs to be modified, 
and provide occupants with feasible recommendations so that they can make required 
decisions. Also, a reference building can be identified for the case building to evaluate its 
energy-saving potential due to occupant behavior modification. The results obtained could 
help building occupants to modify their behavior, thereby significantly reducing building 
energy consumption. Moreover, given that the proposed method is partly based on the 
comparison with similar buildings, it could motivate building occupants to modify their 
behavior. 

 
2.10.6 Related publications 

[1] Z. Yu, F. Haghighat, B.C.M. Fung, H. Yoshino. A decision tree method for building energy 
demand modeling. Energy and Buildings. 42(10) (2010) pp. 1637-1646.  

[2] Z. Yu, B.C.M. Fung, F. Haghighat, H. Yoshino, Edward Morofsky. A systematic procedure 
to study the influence of occupant behavior on building energy consumption. Energy and 
Buildings. 43(6) (2011) pp. 1409-1417.  

[3] Z. Yu, F. Haghighat, B.C.M. Fung, H. Yoshino, Edward Morofsky. A Methodology for 
identifying and improving occupant behavior in residential buildings. To appear in Energy 
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3. Statistical analysis of national building stock 

3.1 Introduction 

Statistical analysis of national building energy consumption is aimed to define a general overview of 
the energy end use due to the construction sector, at national level. Actually, the knowledge of 
national building energy use has remained under-investigated, due to a lack of information regarding 
the overall characteristic. With the aim of building strong national databases, national agencies and 
institutions (CBECS in the U.S., MOHURD in China, TABULA in Europe) have gathered real energy 
use data and physical characteristics on the national building stock. Specifically, China has collected 
data of government office buildings and large-scaled commercial building [1], U.S. has built a national 
sample database of commercial buildings [2], whereas the European countries have collected data 
characterizing national building residential stock [3].  
Subject of the task is to collect and subsequently to elaborate data characterizing national building 
stock in order to offer a realistic interpretation of typical building energy consumption. Different 
approaches have been tested and used for the databases statistical analysis.  
 
Wei, Xiao and Jiang [1] adopted two statistical research methods: boxplot and key statistical 
parameter of energy use data and frequency distribution analysis. Both these two approaches have 
been presented as effective and suitable for future analysis and international comparison. Database 
characteristics have been gathered based on regional government website releases and included Gross 
Floor Area (GFA) and annual electricity consumptions (excluding district heating) of 4600 offices 
buildings. Cluster analysis showed that the average national stock electric consumption is 107 
kWhe/m2a for business office buildings and 67.6 kWhe/m2a for government office buildings. 
 
Hong and Wang [2] analyzed utility bills (monthly energy use for electricity and natural gas) of the 
CBECS U.S. sample survey and broke them down into energy end use for commercial building 
national stock. Statistical regressions and engineering modeling approaches were used to estimate 
national end use based on consumption data. Average energy consumption for the commercial 
buildings in the U.S. - emerged from monthly regression models of 1518 gathered buildings - is 292.6 
kWh/m2, whereof the single largest part (35.3%) is due to space heating. 
 
The European project TABULA (Typology Approach for Building Stock Energy Assessment) 
presented by Talà [4] and Becchio, Corgnati, Ballarini and Corrado [3] aimed to create a 
homogeneous database for European Residential Building Typologies. The research tested three 
statistical methods with the final goal to estimate the energy consumption of residential building 
stocks and therefore, to predict the potential energy efficiency measures impact of benchmark models 
at national level (singular evaluation for each European country participating in the project). These 
methodologies shoot for the enhancement of the potential impact of energy saving measures and 
carbon dioxide reduction, by means of the selection of the more adequate energy retrofitting strategies 
and interventions in existing buildings [3] [4]. Model calculations aimed to estimate the energy saving 
potential of national residential building stocks (Energy Balanced Method) were developed by four 
countries (Denmark, Germany, Italy and Czech Republic) representative of main European climatic 
regions, by using the national EPBD asset rating method [3]. Moreover, the same modeling method 
(EBM) can be possibly extended for the energy performance assessment of the whole national 
building stock. 
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For each country, two levels of building retrofit were considered: (a) standard refurbishment, applying 
standard national measures; (b) advanced refurbishment, applying the best national technologies 
available [4]. Specifically, Italian database contained records for more than 66.000 houses rated across 
Piedmont region and gathered information on physical characteristics and calculated energy 
requirements of single houses. On the base of three independent variables elaborated by means of 
statistical analysis (location, age, form of the building), a total of 84 building types (archetypes) 
representative of the Italian residential building stock were generated [4].  
 
All these kind of approaches, which use statistical analysis of national building stock sample, are very 
effective. As a matter of fact, average predictions of energy consumption at national level are made 
available. Public existing building energy use  has remained for a long time at a micro-perspective [2] 
due to a lack of shared definitions and outdated information [3]. Nonetheless the development and the 
statistical analysis of strong national energy-use datasets, could be one element towards a more robust 
estimation of the overall energy consumption of the national building stocks. 
 
References (contributions to the Annex 53) 
 
[1] Experience 1: Qingpeng Wei, He Xiao, Yi Jiang, National Database of Office Building Energy 

Use in China 

[2] Experience 2: Tianzhen Hong, Liping Wang. The U.S, Commercial Buildings Energy 
Consumption Survey (CBECS) 

[3] Experience 3: Cristina Becchio, Stefano P. Corgnati, Ilaria Ballarini and Vinecenzo Corrado, 
Energy saving potentialities by retrofitting the European residential sector 

[4] Experience 4: Novella Talà. National/Regional investigation level, Single & Multifamily houses 
in Italy  
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3.2 Experience 1: National Database of Office Building Energy Use in China 

(Qingpeng WEI, He XIAO, Yi JIANG. School of Architecture, Tsinghua University, 
Beijing, China) 

 
3.2.1 Introduction 

 
There is a very limited scope survey of energy use in public buildings [1], instead of small scaled 
investigations, case studies or scenario analysis in China. Thus, the knowledge of public building 
energy use always remains at a micro-perspective, lacking the understanding of overall characteristics 
on a regional or national level. In order to build a strong energy data collection system and improve 
certain problems, the Ministry of Housing and Urban-Rural Development (MOHURD) has set up a 
long-term strategic plan [2] to gather and collect real energy use data of governmental office buildings 
and large-scaled commercial buildings in dozens of demonstration provinces, cities and municipalities 
from 2007. The first round data opened to the public was analyzed in this study. This research offers a 
realistic interpretation for office building energy use in China, studies its statistical distribution 
characteristics. 
 
The initial 24 demonstrated provinces, autonomous regions, municipalities under direct control of the 
Central Government and cities with separate budgets from the central finance have distributed their 
surveyed data for governmental offices and large-scaled commercial building since 2007. The 
surveyed data includes Gross Floor Area (GFA) and annual electricity consumption (total value 
including lighting, office appliances, lift, escalator, HVAC system, circulating pumps, and electrical 
heating (not including heating energy use which consumes natural gas, steam, etc., including heating 
energy use of electrical heater, electrical boiler, etc.), and other electrical devices energy use, 
excluding district heating) of each building (EUI excl. DH), which have been released on regional 
government website by the end of 2007 and gathered. Those data is distinguished by region or 
building primary activity, used to calculate the statistical characteristic value (such as median or 
quartile value), to analyze the dual sector feature by cluster analysis and to calculate Gini-coefficient 
by each city what follows in this research. 
 
3.2.2 Database characteristics 

 
• Building activity: governmental or business office building 
• Energy data period: January 2007 to December 2007 
• Contents: building name, building GFA, annual electricity consumption 
• Interval: annual 
• Total sample number: 4600 office building in 13 cities or provinces (detailed info is shown in 

Table 2-35) 
• Online database: the local department of construction website releases the data online, but the 

information is written in Chinese  
• (For example, Tianjin-

http://www.tjcac.gov.cn/jzjn/detail.asp?articleid=9303&classid=1&parentid=0 
 

Table 2-35: Summary of key data information and sampling size 
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Initial sampling size 
City/Province 

code 

Urban 

population 

(million) 

Annual per 

capita GDP 

($USD/capita) 

HDD18 CDD26 
City 

scale(1) 
Total Business Governmental 

A 14.9 10871 2616 103 SL 136 52 84 

B 12.4 12188 1648 203 SL 861 601 260 

C 6.0 9655 2709 116 SL 892 228 664 

D 2.5 6352 289 365 EL 611 241 370 

E 5.4 5478 1549 286 SL 467 75 392 

F 6.1 5381 1276 60 SL 315 129 186 

G 4.3 6904 1684 151 Province 76 N.A(2) N.A 

H 2.7 7759 1481 213 EL 172 N.A N.A 

I 3.5 3293 2135 167 EL 115 54 61 

J 2.4 7415 2743 61 EL 226 N.A N.A 

K 1.2 2456 495 291 L 72 N.A N.A 

L 2.6 5187 605 274 EL 597 57 540 

M 3.4 2971 105 469 Province 133 N.A N.A 

 
Note: (1) SL: super large, the urban population of the city is larger than 4 million. EL: extra large, the 
urban population of the city is larger than 2 million. L: large, the urban population is larger than 1 
million. (2) N.A: Not available. Province G, M and City H, J and K, there is only the total number of 
office building instead of the breakdown of business and governmental ones separately. (3) electric 
consumption includes lighting, office appliances, lift, escalator, HVAC system, circulating pumps, and 
electrical heating (not including heating energy use which consumes natural gas, steam, etc., including 
heating energy use of electrical heater, electrical boiler, etc.), and other electrical devices energy use. 
 
3.2.3 Methodology 

Frequency distribution 
To divide the energy use data into groups and observe the frequency distribution features of EUI excl. 
DH in 13 selected cities or provinces, the interval was determined as an empirical equation given by 
H.A.Sturges:  

2lg

lg
1

n
K +=

, where n=sampling size of each city or province.  
At the same time, the polynomial fitting method is applied to approach the frequency distribution of 
electricity consumption data, as shown on Figure 2-130. The blank column illustrates the sampling 
size within each EUI range, while the blue solid line represents the curve fitting using a polynomial 
with 4th order.  
 
Cluster analysis 
Cluster analysis (CA) is a multivariate statistical technique which can group the observations into 
classes or clusters so that the greater the homogeneity within a group and more distinctions between 
groups can be easily seen. This method can help us to get a better understanding of the dependencies 
existing among a set of inter-correlated variables.  
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The traditional Agglomerative Hierarchical Clustering Method, which starts with the points as 
individual clusters and, at each step, merging the closest pair of clusters, has been proposed in the 
study to determine the reasonable classification of office building EUI in each city or province in 
China.  
Samples were defined as (xi, yi) in which xi and yi refer to EUI and GFA of each building sample 
respectively. The gravity of each cluster was calculated according to equations below, where i 
representing each building and N representing total number of building samples. It could be 
considered as a “typical building” representing characteristics of each cluster.  
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3.2.4 Results and discussion 

Boxplot 
By creating box plots of annual Electricity Use Intensity excluding District Heating (EUI excl. DH), 
the maximum and minimum intensity of each city or province is compared, as well as the 25th and 75th 

percentile limits, as presented in Figure 2-128 and 2-129.  
 
Two significant features are summarized: 
The median EUI excl. DH of City-A and City-B is obviously higher than other cities or provinces. 
While City-I is general lower than that of the others. Take a business office building for instance, the 
median is 107.0 kWhe/(m2.a) in City-A and 89.8 kWhe/(m2.a) in City-B, which is obvious higher than 
33.4 kWhe/(m2.a) in City-I.  
The EUI excl. DH of first-tier cities is general higher than the one of second-tier cities; governmental 
office buildings are lower than business office buildings.  
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Figure 2-128: Box plot of annual electricity use intensity (excluding district heating) of governmental 

office buildings in China 
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Figure 2-129: Box plot of annual electricity use intensity (excluding district heating) of business office 

buildings in China 
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(a) City-A: 52 business office buildings (b) City-D: 225 business office buildings 

Figure 2-130: Frequency distribution and polynomial fitting plot of electricity use intensity (excl. 
district heating) of business office building in typical cities or province 

 
Figure 2-130 illustrates a unique distribution feature of business office buildings’ EUI excl. DH in 
China, which the majority of are centralized over a lower energy range, while the minority of are 
distributed at a higher energy range. The polynomial curve of electricity consumption data appears to 
have double peaks, the phenomenon observed based on the large sample survey is defined as “Duel 
Sector Model”, which exists extensively among the 13 cities selected in China. The following Figure 
2-131 presents the frequency distribution of office buildings in two typical Climate Zones (CZ) in the 
United States. The sufficient data contains 6,837 office building samples nationwide, which was 
selected from the Commercial Buildings Energy Consumption Survey (CBECS) database [3]. The 
Skewness ad Kurtosis test has been applied in the study, and results shows that the EUI of office 
buildings in the United States appears the “Right-skewed Single Peak Distribution” feature, which is 
widely different from China. 
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(a) U.S. Climate Zone-1 (b) U.S. Climate Zone-3 

  
Figure 2-131: Frequency distribution and polynomial fitting plot of electricity use intensity of office 

building of climate zone 1 and 3 in the United States 
 
Besides China and the U.S., the statistical distribution feature of office building EUI in Japan also 
captures our concerns. The Japanese Association for Sustainable Development has developed the 
Database of Energy Consumption of Commercial Building (DECC) [4], which consists of basic 
information and monthly energy consumption data for 41,000 commercial buildings, including 2,339 
governmental office building samples and 2,951 business office building samples all over the country.  
After the check of statistical data of DECC, a total of 5104 valid samples are analyzed. The median 
EUI of governmental office building is 85.4 kWhe/(m2.a) (only the electricity consumption, not 
including heating and cooling use, such as heat for domestic hot water or steam), 146.2 of business 
office building fall below the median, and the average by type is very close to the median. The result 
of the Kolmogorov- Smiromov (K-S) normality test indicates a normal distribution for EUI of office 
buildings in Japan, as seen in Figure 2-132. 
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(a) Governmental office building (b) Business office building 

Figure 2-132: Normal distribution for electricity use intensity of office building in Japan 
 
The EUI of office buildings in the U.S. and Japan has the “Single Sector Distribution” feature instead 
of the “Duel Sector Distribution” characteristics as seen in China. However, slight differences exist 
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between the U.S. and Japan. The former shows Right- Skewness, but the latter one shows a normal 
curve. The order of EUI from smallest to largest is China, Japan and U.S. What needs to be 
emphasized is that the EUI in office buildings in China does not include district heating but does 
include some packaged electrical heating equipment instead.  
 
Cluster analysis 
Typical results of the cluster analysis in two typical cities are shown in Figure 2-133. Several 
conclusions can be summarized, including: 
Two clusters in each city or province were identified based on the analysis, which confirms the similar 
phenomenon on frequency distribution analysis. The distance of two gravities illustrates the difference 
of two clusters, and the gravity itself represents the energy intensity of the cluster. 
The gravity of first-tier cities is usually larger than that of second-tier cities. The gravity of double 
clusters in each city is shown in Table 2-36. For instance, the two cluster gravities of business office 
buildings in city-A is (39, 95.1) and (122, 117.2), while the two gravities of city-F are (14, 61.8) and 
(58, 65.3), the first figure represents GFA, and the latter one refers to EUI.  
 
The gravity of government office buildings is usually smaller than that of business office buildings, as 
shown in Table 2-36, which means that government office buildings are smaller and less energy 
intense consumers than business office buildings.  
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(a-1) City A-84 business office building (a-2) City A-54 government office building 
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(b-1) City L-53 business office building (b-2) City L-498 government office building 



221 
 
 

  
Figure 2-133: Cluster Analysis of EUI excl. DH of business and governmental office building in 

typical cities  
 

Table 2-36: Gravity of clusters in each city or province 

A B C D E City 
Indicator BO GO BO GO BO GO BO GO BO GO 

GFA thous. m2 39 27 25 3 10 4 37 3 3 5 
Cluster 1 EUI excl. 

DH 
kWhe/(m2.a) 95.1 65.8 93.6 80.4 68.9 65.3 62.5 33.5 59.6 48.2 

GFA thous. m2 122 75 97 31 51 58 118 36 33 25 
Cluster 2 EUI excl. 

DH 
kWhe/(m2.a) 117.2 72.4 149.8 87.5 70.0 61.6 71.4 37.8 59.0 59.3 

I L F G K J M City 
Indicator BO GO BO GO BO GO O O GO O 

GFA thous. m2 20 3 16 4 14 4 7 4 3 7 
Cluster 1 EUI excl. 

DH 
kWhe/(m2.a) 50.9 38.7 56.1 38.5 61.8 52.8 84.0 48.7 35.5 39.0 

GFA thous. m2 51 5 45 17 58 14 28 26 13 13 
Cluster 2 EUI excl. 

DH 
kWhe/(m2.a) 78.8 49.3 80.9 59.5 65.3 68.6 121.7 71.0 58.3 69.8 

 
3.2.5 Conclusions 

This is the first chance to collect such a large amount of office building energy use survey data in 
several cities in China. Based on those samples, the EUI excl. DH was analyzed in typical cities in 
China. Take city-A for example, the most well-developed city in China, the range of business office 
building EUI was  from 62.1 to 166.9 kWhe/(m2.a), with an average of 107.0 kWhe/(m2.a); and from 
23.0 to 136.6 kWhe/(m2.a), with an average of 67.6 kWhe/(m2.a) for government office buildings.  
 
A frequency distribution analysis, as well as polynomial fitting method was conducted. It was found 
that the EUI of office buildings in China have a unique “Dual Sector” characteristic, which means a 
large proportion of buildings distributed at the range with smaller EUI while there always existing a 
small proportion of buildings with a higher EUI level. This feature was definitely different from the 
U.S and Japan. By analyzing national CBECS survey data, the EUI frequency distribution in the U.S. 
was found to be right-skewed single-peak. While the EUI distribution in Japan, based on DECC 
investigation data, fitted normal distribution. 
Furthermore, cluster analysis of “GFA” together with “EUI” for office buildings in China was 
considered. Two clusters in each city or province in China were identified based on the traditional 
Agglomerative Hierarchical Clustering Method. It was found that the gravity of first-tier cities is 
usually higher than second-tier cities and business offices are higher than government offices. The 
slope and distance between two gravities was different from each city or province, reflecting the 
interregional disparity in China.  
 



222 
 
 

Due to the national database of office buildings in China only provides the GFA and annual electricity 
consumption, it is very difficult to study the occupant behavior’s impact through statistical research. 
However, the statistical research method used in this paper is effective and suitable for application. 
Two key methods can be adopted in the future analysis or international comparison: Boxplot and key 
statistical parameter of energy use data. Due to most of the national energy distribution is not normal 
distribution, thus, average are not suitable for comparison. Five key statistical parameter, including 
median, 3/4 quartile, 1/4 quartile, maximum and minimum are more objective to depict the 
distribution feature of the data. Boxplots like Figure 2-128 and Figure 2-129 is clear and 
comprehensive to illustrate those five parameters. 
Frequency distribution analysis. Huge differences are appeared after comparing the frequency 
distribution of China, Japan and U.S. For understanding the regional or national statistical feature, 
frequency distribution analysis can be used. Several statistic software has the function of Kolmogorov- 
Smiromov (K-S) normality test, such as SPSS 13.0, R, etc.  
 
3.2.6 References 

[1] H. Zhou, N.P. Li, etc. A survey on energy consumption and operation management status of 
public buildings in Changsha, China. Proceedings – 6th International Symposium on Heating, 
Ventilation and Air Conditioning, ISHVAC 2009, 58-64. 

[2] Ministry of Housing and Urban-Rural Development, Principal of the Implementation on 
Strengthening Energy-saving Management of Governmental Office and Large-scaled 
Commercial Building, MOHURD, Beijing, 2007. 

[3] Energy Information Administration, Commercial Building Energy Consumption Survey 
(CBECS), http://www.eia.gov/emeu/cbecs/cbecs2003/. 

[4] The Japanese Association for Sustainable Development, Energy Consumption of Commercial 
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3.3 Experience 2: The U.S. Commercial Buildings Energy Consumption Survey  

(Tianzhen Hong, Liping Wang. Lawrence Berkeley National Laboratory, USA) 
 
3.3.1 Introduction 

Although no one building type dominates the commercial buildings sector in the US, office buildings 
are the most common and account for more than 800,000 buildings or 17 percent of total commercial 
buildings. Offices comprised more than 12 billion square feet of floor space, 17 percent of total 
commercial floor space, the most of any building type. The aim of the work is to describe the data 
analysis method employed by the CBECS 2003 that took utility bills (monthly energy use) and broke 
them down into energy end uses for office buildings.  
 
3.3.2 Database characteristics 

CBECS is a national sample survey, developed by the U.S. Energy Information Administration, that 
collects information on the stock of U.S. commercial buildings, their energy-related building 
characteristics, and their energy consumption and expenditures. Commercial buildings include all 
buildings in which at least half of the floor space is used for a purpose that is not residential, industrial, 
or agricultural, so they include building types that might not traditionally be considered "commercial," 
such as schools, correctional institutions, and buildings used for religious worship. The building 
survey covers many topics – building size and use; ownership and occupancy; energy sources, uses, 
and equipment; energy consumption and cost. The CBECS was first conducted in 1979; the eighth, 
and most recent survey, was conducted in 2003. The 2012 CBECS interviews will be conducted 
between April 2013 and September 2013. CBECS is currently conducted on a quadrennial basis. The 
sample size is historically in the range of 5000 to 7000 buildings across the country which were 
statistically sampled and then weighted to represent the entire stock of commercial buildings in the 
U.S. For CBECS 2012, the overall building sample size is increased to 8400 buildings. There are 878 
office buildings surveyed in the 2003 CBECS.  
 
3.3.3 Method 

The energy end-use consumption tables for 2003 CBECS provide estimates of the amount of 
electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, 
ventilation, water heating, lighting, cooking, refrigeration, personal computers, office equipment 
(including servers), and other uses. There are four basic steps in the end-use estimation process: 
 

• Regressions of monthly consumption on degree-days to establish reference temperatures for 
the engineering models, 

• Engineering modeling by end use, 
• Cross-sectional regressions to calibrate the engineering estimates and account for additional 

energy uses, and 
• Reconciliation of the end-use estimates to the CBECS total building energy consumption.  

 
Monthly Regression Model 
Monthly consumption data were available for 1,518 CBECS buildings for electricity and 1,021 
buildings for natural gas in the 2003 building samples. These data allow us to analyze the dependence 
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of consumption on temperature. The degree-day terms were calculated for the periods defined by the 
actual meter-read dates each month for each case. The results of the analysis determine appropriate 
degree-day bases for modeling heating and cooling energy use. 
 
For each of the monthly data cases, we fit a model of the form 
 
Ym = αm  + βh hm(τh) + βc cm(τc) + εm 

 
Where 

• Ym = consumption per day for month m 
• τh  = heating degree-day basis that maximizes the regression’s R2 
• τc  = cooling degree-day basis that maximizes the regression’s R2 
• hm(τh) = heating degree-days per day base τh for month m  
• cm(τc) = cooling degree-days per day base τc for month m  
• εm = residual error 
• αm , βh, βc = regression coefficients 

 
The regression iteratively searches for the degree-day bases τh and τc that give the best R2, and uses the 
corresponding coefficients αm , βh, βc, from the regression with these bases.  These are the maximum 
likelihood estimates.   
 
Engineering Models for End Use Estimates 
The engineering end-use models in the end-use estimation procedure were from ASHRAE, 
Illuminating Engineering Society of North America (IESNA), and other standard engineering 
handbooks. Parameter values came from these handbooks and from large-scale field studies of 
commercial buildings. 
 
a) Space Heating and Cooling 
The heating and cooling models estimate the energy consumption of heating systems (primary and 
secondary) and cooling systems for all energy sources. The models account for building heat loss (or 
gain) as a function of the building’s weighted average conductance and heating (or cooling) degree 
days. The model accounts for ventilation heat loss (or gain) as a function of the volume of external air 
brought into a building each day, the temperature difference between the outside air and the inside air, 
and the heat capacity of air.  Starting with CBECS information on the equipment type and estimated 
percentage of heated or cooled floor space, the model relies on average estimates for equipment 
efficiency, and on calculations for conduction and ventilation losses (or gains).  
 
To estimate heating and cooling consumption, the engineering sub-models make use of degree-days.  
Generally, the form of degree-day calculations is as follows:   
 
Heating = Heat Loss Coefficient * HDD / EfficiencyHeating 

 
Where  

• HDD is a term for heating degree-days 
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• Heat Loss Coefficient is a term that encompasses ventilation and conductive losses for a 
building  

• EfficiencyHeating is heating efficiency 
 
For cooling, cooling degree-days are used, along with cooling equipment efficiencies. Also, because 
outdoor temperature is higher than the set indoor temperature, infiltration and conductive ‘losses’ 
result in net gains that increase load.   
 
By incorporating combining the HDD and CDD terms with the heat loss coefficient and separating 
ventilation losses from conduction.  The resulting form is:  
 
Heating = (LossBldng + LossVent) / EfficiencyHeating 

 
Where  

• LossBldng is heat loss from the building due to conductance, including HDD 
• LossVent is heat loss from the ventilation system’s intake of external air, including HDD  

 
Cooling = (GainBldng + GainVent) / EfficiencyCooling 
 
Where 

• GainBldng is heat gain from the building due to conductance, including CDD 
• GainVent is heat gain from the ventilation system’s intake of external air, including CDD. 

 
65°F (18.33°C) is a commonly referenced degree-day base.  However, buildings may vary in their 
internal gains.  Therefore, rather than using the 65°F (18.33°C) base, the engineering model uses 
modified degree-day bases, as informed by the monthly regression models. 
 
b) Ventilation  
The engineering model for ventilation estimates supply and return fan energy use. The model accounts 
for differences in static pressure by system type and by building floor space. Typical meteorological 
year data helped develop estimates of variable air-volume energy factors by climate zone.  
The ventilation engineering submodel estimates supply and return fan energy use.  At its most basic, 
the equation for ventilation energy use is as follows: 
 

Ventilation = VentEff8,520

WG365VentHrsCFMV1,000

∗
∗∗∗∗

 
 
Where 

• CFMV = total ventilation air volume (ft3/minute), 
• VentHrs = ventilation system operating hours, 
• WG = static pressure (inch of water gauge, WG), 
• 8,520 = conversion factor (ft3-in/min-kW), 
• VentEff = ventilation efficiency. 

 
The submodel uses this form to develop estimates for supply and return fan energy, for a  
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VentilationTotal = VentSupply + VentReturn  (6) 
 
Where  
 

• VentSupply = supply fan energy, and 
• VentReturn = return fan energy.   

 
To estimate total ventilation air volume, the model relies on the external air ventilation volumes 
discussed in the heating and cooling submodels.  It inflates these values for some central and packaged 
HVAC systems by assuming that the outdoor air volume is 25 percent of the total air flow rate, except 
for labs where it is 100 percent. For heat pump systems, the model assumes a central ventilation 
system that circulates fresh air. The model also accounts for differences in static pressure by system 
type, and by building floor space. 
 
c) Lighting  
The lighting model estimates electricity consumption from internal and external lighting for all 
building types. The model calculates energy use as a factor of average lamp power per floors pace and 
average annual operating hours. The interior lighting portion relies on information from CBECS on 
percentage floor space lit by each lamp type, and building operating hours. The model assumes 
average lamp system efficacy (lumens per watt) for each lamp type, and recommended average 
illuminance levels by building type.   
 
Lighting = LightingInterior + LightingExterior  (7) 
 
The submodel calculates energy use as a factor of average lamp power per floorspace and average 
annual operating hours.  The interior lighting portion relies on information from CBECS on 
percentage floorspace lit by each lamp type, and building operating hours.  External assumptions 
include average lamp system efficacy (lumens per watt) for each lamp type, and recommended 
average illuminance levels by building type.  The exterior lighting portion assumes a fixed average 
power density per lamp type, by exterior lighting application: exit signs, exterior architecture, parking, 
exterior signs, and exterior landscaping.  Average annual operating hours by building type are also 
assumed.   
 
LightingInterior = OpHrs * SqFt * LPT  (8) 
 
Where  

• OpHrs  = annual operating hours (hrs),  
• SqFt  = building floor space (ft2), 

• LPT  =

∑ ÷∗
bpeBuildingty

iLampType
iib LampLPWLampPIL

,
,

, 
 
Where 

• IL b  = recommended lighting illumance levels by building type (lumens), 
• LampPi  = percentage of floorspace lit by a lamp type (%), 
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• LampLPWi = average system efficacy, accounting for fixture efficiency and lumen 
degradation over time (lumens per watt). 

• LightingExterior = 

∑ ∗
b  type,Building

i ,ghtingTypeExteriorLi
ib PwrOpHrs

 
 
Where  

• OpHrsb = annual operating hours, by building type (hrs),  
• Pwri = weighted average wattage per square foot by exterior lighting category (W).  

 
CBECS information on percent lit by each lamp type does not sum to 100% because of overlap in 
lighting types for given applications.  However, to estimate lighting consumption, the submodel 
renormalizes these percentages to develop average shares of lighting types.  To estimate average 
system efficacies, the model chooses typical lamp (and ballast) systems for each lighting category.  In 
addition, it considers the presence of specular reflectors, which it estimates as improving light output 
by twenty percent.  The presence of electronic ballasts indicated which type of fluorescent lamp was 
present, T12 or T8.  
 
d) Office Equipment 
The office model estimates electricity consumption from office equipment for all building types. The 
model divides office equipment electricity consumption into four components. One division separates 
office electricity use into computer equipment versus other office electric loads. Computer equipment 
includes PCs, monitors and printers. The non-computer-based equipment includes copiers, faxes, cash 
registers, and servers. The other division separates office electricity used during building on-hours 
from electricity used during building off-hours.   
 
Office = OfficePCOn + OfficePCOff + OfficeNonPCOn + OfficeNonPCOff; 
 
Where, 

• OfficePCOn = energy use of PC’s, printers and monitors during building on-hours  
• OfficePCOff = energy use of PC’s, printers and monitors during building off-hours   
• OfficeNonPCOn = energy use of servers, faxes, copiers and cash-registers during building off-

hours 
• OfficeNonPCOff = energy use of servers, faxes, copiers and cash-registers during building 

off-hours. 
 
e) Water Heating 
The water heating model uses system efficiency to convert water heating load to total energy 
consumed, where the load is the amount of energy needed to heat a given amount of water to a given 
temperature. Additional energy is used in systems which distribute hot water throughout the building 
or systems with storage tanks. To account for the variation in energy use by system type, the model 
uses indicators about equipment type and whether the water is supplied by instant-heating types to 
determine whether storage and distribution are used.   
 
Water Heating = Load / WHEff = [(Tin-Tout) * GPD * Cw * Cp * Days] / WHEff, 
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Where,  
• Tin   = inlet water temperature (°F) 
• Tout   = temperature of delivered water (°F) 
• GPD    = gallons of water used per day (gallon/day) 
• Days   = days per year (day) 
• Cw    = the specific heat of water (btu/lb°F) 
• Cp   = the density of water (lb/gallon) 
• WHEff   = system efficiency (%) 

 
f) Refrigeration 
The refrigeration submodel calculates electricity consumption from commercial refrigeration.  The 
submodel relies predominantly on end-use intensity estimates, by building type, from CEUS.  
However, it also incorporates CBECS information on the number of refrigerators.  
 
Refrigeration = x_ElRf * m_MonUse/12 * 1000 * RFUnits * x_RfElPerUnit 
 
Where 

• x_ELRf = 0, 1 depending on whether refrigeration is indicated with RFGEQP8,  
• m_MonUse/12 = fraction of the year the building is open (%), m_MonUse is based on 

MonUse8 where present, or defaults to 12 where missing 
• 1000 = conversion factor to convert kilowatt-hours to watt-hours  
• RFUnit = total number of refrigerator units in building =   
• m_RFGCLN + m_RFGOPN + m_RFGRSN +   m_RFGVNN +  m_RFGWIN,  
• and x_RfElPerUnit = x_RfElEUI / x_RFDensityBldng, 

 
Where  

• SqFtRf  = SqFt8 * x_ElRf, 

• RFDensity  = 
∑

∑

CEUS_BType

CEUS_BType

SqFtRf

RFUnits

. 
 
g) Other 
The electricity and district heat models rely on engineering estimates. Since many types of equipment 
use electricity, CBECS does not explicitly ask if electricity is used for unspecified “other” uses of 
electricity. Therefore, the engineering model estimates “other” electricity use by applying the CEUS 
(2005 California Commercial End-Use Survey) intensities for miscellaneous, process equipment, 
motors, and air compressors to the CBECS floorspace. These estimates were then adjusted for the 
number of months of building operation per year. Since district heat is primarily used for heating, 
water heating, cooling, and cooking end-uses, which were explicitly modeled, and given the relatively 
small number of cases and lack of information, the district model does not calculate “other” 
consumption. For fuel oil and natural gas, the model for other energy use is based on regression 
estimates.   
 
Cross-sectional Regressions 
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Cross-sectional regression models were used to calibrate the natural gas and fuel oil engineering 
estimates. The cross-sectional regression models for natural gas were fit with consumption per square 
foot as the dependent variable and the independent variables were defined on a corresponding scale. 
Besides the engineering estimates, independent variables included dummy variables for the presence 
of a laundry, cleaners, or central plant, and to indicate natural gas use for manufacturing or electricity 
generation. Additional dummy variables were defined to indicate whether natural gas or some other 
fuel was used as a secondary heating source in the building. 
The cross-sectional fuel oil regression models were fit with CBECS consumption per square foot as 
the dependent variable. The independent variables, defined on a corresponding scale, included the 
engineering estimates and dummy variables for the presence of a central plant or the use of fuel oil for 
manufacturing or electricity generation.  Additional dummy variables were defined to indicate whether 
fuel oil or some other energy source was used as a secondary heating source in the building. 
 
Final Reconciliation 
For electricity, reconciliation with the total consumption took two steps. First, the monthly model 
results were used to provide approximate estimates of annual heating and cooling use. For each case 
with monthly regression estimates, the ratio of that heating or cooling estimate to the corresponding 
preliminary engineering estimate was calculated. The median ratios were then reviewed by building 
size, activity, and age, as well as by climate zone. Since the results showed a definite variation by 
climate zone, the median ratios were used to adjust the engineering estimates for electric primary heat 
and electric cooling for all cases. Second, the adjusted engineering estimates were prorated to match 
the CBECS estimate of total building electricity consumption. 
For natural gas and fuel oil, the adjusted engineering estimates were prorated to match the total 
building consumption.  For district heat, the engineering estimates were prorated to match the total 
building consumption. 
 
3.3.4 Results 

Figure 2-134 shows the geographical areas as defined by the U.S. Bureau of Census including the four 
Census Regions and nine Census Divisions. Office building samples distributions by floor area, 
vintage and location are shown in Figures 2-135 to 2-137 respectively. Figure 2-138 lists the site 
energy use intensities (EUI, in kWh/m²) for office buildings in nine census divisions. The average site 
EUI is 292.6 kWh/m² for the office buildings in the 2003 CBECS, with HVAC (Space Heating + 
Cooling + Ventilation) consuming 50.5% followed by lighting 24.9%. The single largest end use is 
space heating which consumes 35.3% of total site energy.   
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Figure 2-134: CBECS Census Regions 

 
Figure 2-135: Distribution of office building samples by floor area 

 
Figure 2-136: Distribution of office building samples by vintage 
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Figure 2-137: Distribution of office building samples by location 

 
Figure 2-138: Average site energy use intensities (kWh/m2) for office buildings in nine census 

divisions 
 
3.3.5 Conclusions 

This document describes the data analysis method used by CBECS 2003 for end use estimates for 
office buildings in the U.S. Statistical regressions and engineering modeling approaches were used to 
calculate end uses based on monthly consumption data for electricity and natural gas, and collected 
building system characteristics in the survey. The top four major end uses in office buildings are space 
heating, lighting, space cooling, and plug loads (office equipment + computers).  
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3.4 Experience 3: Energy saving potentialities by retrofitting the European residential 
sector 

(C. Becchio, S. P. Corgnati, I. Ballarini and V. Corrado, Politecnico di Torino, Italy) 
 
Energy saving 
The national building typologies can be used as data sources for forecasting and evaluating the energy 
saving potential and the carbon dioxide emission reductions for each European country. Thereby the 
main objective of the IEE TABULA project has been to create a harmonized structure of the European 
building typologies and to identify representative building types. This purpose has come from the need 
to assess the energy consumption of the national building stock and consequently to predict the impact 
of different energy efficiency measures in order to select effective retrofit strategies on the existing 
buildings. Two levels of building retrofit have been considered: a standard refurbishment, applying 
measures which are commonly used in the country; an advanced refurbishment, applying measures 
which reflect the best available technologies. The evaluation of each reference building type has been 
performed in each country by using the national EPBD asset rating method and by showing the energy 
performance before and after the refurbishment.  
 
Additional statistical information about the frequency of constructions and of heating systems types 
has made possible the use of the reference building types as models for the assessment of the energy 
performance of the whole national building stock. 
The present paper reports the first outcomes of the application of the above described methodology to 
the national residential building stocks of four countries representative of the North, Middle, South 
and East European Countries. It summarizes the results presented in the TABULA report “Application 
of Building Typologies for Modelling the Energy Balance of the Residential Building Stock”.   
 
3.4.1 Introduction 

TABULA (Typology Approach for Building Stock Energy Assessment) [1] was a project within the 
European program “Intelligent Energy Europe” (IEE) with the participation of thirteen European 
countries (Germany, Greece, Slovenia, Italy, France, Ireland, Belgium, Poland, Austria, Bulgaria, 
Sweden, Czech Republic and Denmark). The project objective has been to create a harmonized 
structure of the European building typologies [2]. Each participant developed a building typology 
classification that allowed to divide national existing buildings in categories: for each category, a 
building type was identified as representative of a defined climatic region, period of construction, 
building size, etc. In many European countries, the classification of building types is a concept already 
used at national and/or regional level. However, both at national and at European level, a number of 
problems rise up due to lack of shared definitions, to unknown or not updated data about existing 
buildings, to the difficulties in defining a common  concept of building typology. In practice, it is 
impossible to compare the types of buildings among European countries without uniform and shared 
definitions. As a consequence, TABULA firstly aimed to create a harmonized structure to classify 
building types in Europe: the project focused on residential buildings, but a possible extension to other 
uses is also possible. 
 
Building typologies developed during the TABULA project can be exploited as a basis for analysing 
the national housing sector. In fact, a crucial goal of the project has been to estimate the energy 
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consumption of residential building stocks at national level and, consequently, to predict the potential 
impact of energy efficiency measures (addressed to building envelope and space heating and DHW 
systems) in order to select effective strategies for upgrading existing buildings. In particular, during 
the TABULA project six of the European partners (Belgium, Czech Republic, Denmark, Germany, 
Greece, Italy) carried out model calculations aimed to image the energy consumption and estimate the 
energy saving potentials of their national residential building stocks (Energy Balance Method).  
 
Specifically, as shown in Figure 2-139, starting from global statistics at national and regional level and 
from the corresponding available residential building samples divided in classes, some reference 
building types have been selected in order to obtain a relevant characterization of the analyzed 
buildings. They have been chosen as representative of a large portion of the national residential 
building stock. Different modelling approaches were chosen by the partners depending on the 
available statistical data. Some defined a set of synthetic buildings reflecting building stock averages; 
others applied a set of generic example buildings from the national TABULA typologies. 
  
The methodology provided by the European standards supporting the Energy Performance of 
Buildings Directive (EPBD, 2002/91/EC) has been applied for the evaluation of the energy demand of 
the selected building types and to assess the energy saving potential due to energy retrofit actions. In 
fact, for each reference building type two refurbishment measures have been considered: a standard 
refurbishment through the application of measures commonly applied within the country; an advanced 
refurbishment through the introduction of measures that reflect the use of the best available 
technologies. Finally additional information about the number and the frequency of each specific 
building type has made possible the application of statistical models in order to estimate the overall 
energy performance, energy saving potentialities, carbon dioxide emissions reductions of the building 
stock at national/regional level.  
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Figure 2-139: Procedure for Energy Balance Method used in the TABULA project to predict the 
potential impact of energy efficiency measures on national housing sector. 

 
This contribute shows the first outcomes of the application of the above described Energy Balance 
Method at the national residential building stock of four countries: 

• Denmark, as a representative of the North European countries; 
• Germany, as a representative of the Middle European countries; 
• Italy, as a representative of the South European countries; 
• Czech Republic, as a representative of the East European countries. 

 
The data presented in this paper have been extrapolated from the TABULA report “Application of 
Building Typologies for Modelling the Energy Balance of the Residential Building Stock” [3] and 
from the “National Scientific Report” on the TABULA project of the four analysed countries [4-7].   
 
3.4.2 Denmark 

The energy balance of the Danish residential buildings was calculated using synthetical average 
buildings. These were split within nine different construction periods and three building types (single 
family houses SFH, terraced houses TH, block of flats AB). 
In order to estimate energy saving potentials the national Energy Balance method was used.  
Refurbishment measures were applied only to the envelope and consisted in two different levels of 
thermal insulation: the standard refurbishment is associated with a high thickness of insulating 
material (300 mm for the ceiling, more than 100 mm for the wall), while the advanced refurbishment 
is associated with a higher thickness of insulating material (400 mm for the ceiling, more than 200 mm 
for the wall). Consequently, the energy saving potential was calculated only in term of net energy 
demand for heating and DHW. The results of the analysis are presented in term of energy saving and 
CO2 emission reduction in Table 2-37. 
 

Table 2-37: Annual energy saving potentialities (in terms of net energy demand for space heating 
and DHW) and CO2 emissions reductions by standard and advanced refurbishment for Danish 
residential building stock. 

 
3.4.3 Germany 

The analysis of the German building stock was conducted on a set of six synthetical average buildings.  
Two building size classes (single family houses with one or two dwellings and multifamily houses 
with three or more dwellings) and three construction periods according to different levels of energy 
saving national regulations were considered (Table 2-38). 
 

Original State Standard Refurbishment Advanced Refurbishment 

QH,W,p tCO2 ∆QH,W,p 

∆% 

savings 
∆tCO2 ∆QH,W,p 

∆% 

savings 
∆tCO2 

Reference 

building type 

[103GWh] [106t] [103GWh] [-] [106t] [103GWh] [-] [106t] 

SFH and TH  31.5 --- 14.6 -46% --- 15.6 -50% --- 

AB 12.1 --- 5.3 -44% --- 5.9 -49% --- 

 43.6 --- 19.9 -46% 3.1 21.5 -49% 3.4 
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Table 2-38: Classification of the German building stock. 
 
 
 
 
 
 
 
 
 
 
The energy balance model was developed on basis of the available statistical input data. The energy 
demand for space heating of the considered six building types was calculated according to a seasonal 
energy balance approach. In this way an estimation of energy saving potentials in the German building 
stock for heating and hot water supply was carried out.  
 
The refurbishment measures consisted in the application of insulation material on walls, floors and 
roofs and in the replacement of windows. The standard refurbishment is characterized by U-values of 
0.24 W/(m2K) for walls, roofs and upper floor ceilings, U-values of 0.3 W/(m2K) for ground floors 
and cellar ceilings and U-values of 1.3 W/(m2K) for windows. The advanced refurbishment is 
characterized by U-values of 0.16 W/(m2K) for walls, U-values of 0.14 W/(m2K)  for roofs and upper 
floor ceilings, U-values of 0.20 W/(m2K) for ground floors and cellar ceilings and U-values of 0.80 
W/(m2K) for windows. With reference to the retrofit of the space heating and DHW systems, at the 
standard level it was considered to replace the heat generator, while at the advanced level the measures 
consisted in the improvement of efficiency of the distribution and generation subsystem, in the 
application of an heat recovery ventilation system and in the installation of a solar thermal plant. 
Energy saving potential obtained by retrofitting the German residential building stock is reported in 
Table 2-39. 
 

Table 2-39: Annual energy saving potentialities (in terms of primary energy for space heating and 
DHW) and CO2 emissions reductions by standard and advanced refurbishment for German 
residential building stock. 

 
 
 
 
 
 
 
3.4.4 Italy 

In Italy, six reference building types were created to represent the housing stock for the purpose of 
Energy Balance analysis, as shown in Table 2-40. 
 

Table 2-40: Classification of the Italian building stock. 

Reference building type Construction period Number of buildings 

Single Family House SFH I until 1978 9'610'000 

Single Family House SFH II 1979 – 1994 2'710'000 

Single Family House SFH III 1995 – 2009 2'670'000 

Multi-Family House MFH I until 1978 2'340'000 

Multi-Family House MFH II 1979 – 1994 440'000 

Multi-Family House MFH III 1995 – 2009 270'000 

   18'040'000 

Original State Standard Refurbishment Advanced Refurbishment 

QH,W,p tCO2 ∆QH,W,p 

∆% 

savings 
∆tCO2 ∆QH,W,p 

∆% 

savings 
∆tCO2 

[103GWh] [106t] [103GWh] [-] [106t] [103GWh] [-] [106t] 

661 136 304 -46% 63 512 -77% 100 

Reference building type Construction period Number of buildings 
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These reference buildings were chosen according to statistical analysis: they are representative of a 
suitable significant portion of the entire national building stock considering both the construction age 
and the building size (i.e. number of apartments, floor area) and they belong to the “Middle Climatic 
Zone” (from 2100 to 3000 heating degree days), which is the most representative of the Italian climate 
(about 4250 municipalities on a total number of 8100). Specifically, the first two reference buildings 
(single family houses) are “Theoretical Buildings”, chosen on the basis of statistical data (Piedmont 
Regional Database of Building Energy Performance Certificates). The other reference buildings 
(multi-family house and three apartment blocks) are “Example Buildings”, i.e. real buildings defined 
typical according to the experience. 
 
The official national calculation method (Technical Specification UNI/TS 11300 - National Annex to 
CEN Standards) for energy certificates was applied for the evaluation of the energy demand of the 
selected reference buildings and to assess the energy saving potential due to energy retrofit actions 
according to two different scenarios (standard and advanced refurbishment). In regard to the envelope, 
the refurbishment measures consisted in the application of insulation material on walls, floors and 
roofs and in the replacement of windows. The considered U-values correspond to the requirements 
established by the new regulations on energy performance of buildings in Piedmont Region (D.G.R. n. 
46-11968), that belongs to the “Middle Climatic Zone”. The U-values applied for the standard 
refurbishment are the U-value limits set by the Piedmont Region regulation (0.33 W/(m2K) for walls, 
0.30 W/(m2K) for roofs, ceilings and floors, and 2 W/(m2K) for windows), while the U-values applied 
for the advanced refurbishment are the optional U-value targets set by the Piedmont Regional 
regulation (0.25 W/(m2K) for walls, 0.23 W/(m2K) for roofs, ceilings and floors, and 1.7 W/(m2K) for 
windows). 
With reference to the refurbishment of the space heating and DHW systems, some measures were 
considered in order to improve the efficiency of emission, distribution and generator subsystems and 
to exploit renewable energies with the installation of a thermal solar plant (advanced refurbishment). 
Energy saving potentialities obtained applying the mentioned retrofit measures at the Italian residential 
building stock are reported in Table 2-41. 
 

Table 2-41: Annual energy saving potentialities (in terms of primary energy for space heating and 
DHW) and CO2 emissions reductions by standard and advanced refurbishment for Italian 
residential building stock. 

Single Family House SFH.01 until 1900 1'046'278 

Single Family House SFH.03 1921 – 1945 559'336 

Multi-Family House MFH.04 1946 – 1960 707'563 

Apartment Block AB.05 1961 – 1975 869'056 

Apartment Block AB.06 1976 – 1990 1'214'773 

Apartment Block AB.07 1991 – 2005 358'765 

   4'755'771 

Original State Standard Refurbishment Advanced Refurbishment 

QH,W,p tCO2 ∆QH,W,p 

∆% 

savings 
∆tCO2 ∆QH,W,p 

∆% 

savings 
∆tCO2 

Reference 

building 

type 
[103GWh] [106t] [103GWh] [-] [106t] [103GWh] [-] [106t] 
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3.4.5 Czech Republic 

Six reference building types were created to represent the Czech Republic housing stock for the 
purpose of Energy Balance analysis. This set of buildings was categorized by size and age as shown in 
Table 2-42. 
 

Table 2-42: Classification of the Czech Republic building stock. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The buildings are theoretical buildings based on the analysis of available statistical data and on the 
knowledge of historical standard requirements for the U-values of the building envelope and the usual 
efficiency of the heating and DHW systems. 
The energy balance model was created on basis of the statistical data. The delivered energy and the 
energy demand for space heating of the considered six groups of buildings was calculated using 
national calculation method.  
In this case the refurbishment measures were fixed on the basis of recent studies. In fact, it was 
estimated by experts that by achieving U-values prescribed by the latest version of the Czech standard 
CSN 730540 following amount of energy can be saved: 
 

• 20% of energy in average can be saved by applying ETICS (External Thermal Insulation 
Composite Systems) to the exterior walls; 

• 10% of energy in average can be saved by roof insulation; 
• 25% of energy in average can be saved by windows replacement; 
• heating control systems would bring savings ranging approximately between 5 and 15%; 
• the losses can be reduced up to 50% by insulating properly the pipes. 

 

SFH.01 50.6 10.3 38.8 -77% 7.9 42.8 -85% 8.7 

SFH.03 22.1 4.5 17.8 -81% 3.6 19.4 -88% 3.9 

MFH.04 127.2 25.8 98.2 -77% 19.9 105.5 -83% 21.4 

AB.05 419.5 85.2 301.2 -72% 61.2 349.9 -83% 71 

AB.06 364.3 74 204.4 -56% 41.5 255.4 -70% 51.9 

AB.07 76.6 15.6 32 -42% 6.5 42.3 -65% 8.6 

 1060.5 215.3 692.5 -65% 140.6 815.4 -77% 165.5 

Reference building type Construction period Number of buildings 

Single Family House SFH.1 until 1979 1'649'756 

Single Family House SFH.2 1980 – 2001 424'172 

Single Family House SFH.3 2002 – 2010 139'293 

Multi-Family House  

and Apartment Block 
APT.1 until 1979 1'277'705 

Multi-Family House  

and Apartment Block 
APT.2 1980 – 2001 574'438 

Multi-Family House  

and Apartment Block 
APT.3 2002 – 2010 165'648 

   4'159'902 
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The above mentioned percentages were considered in the calculation energy balance model and 
distributed over the categories of buildings. The results are shown in Table 2-43. 
 

Table 2-43: Annual energy saving potentialities (in terms of primary energy for space heating and 
DHW) and CO2 emissions reductions by standard and advanced refurbishment for Czech Republic 
residential building stock. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.4.6 Conclusion 

The analysis shows that building typologies can be a helpful tool for modelling the energy 
consumption of national building stocks and for carrying out scenario analyses beyond the TABULA 
project. The consideration of a set of representative buildings, which reflect the current state of the 
building national stock, makes it possible to have a detailed view on various packages of 
refurbishment measures for the complete buildings stock or for its sub-categories. The effects of 
different insulation measures at the respective construction elements as well as different system supply 
measures including renewable energies can be considered in detail with fast analysis.  
 
As general rule, when two different level of retrofit were considered it is noted that the standard 
refurbishment is associated with high relative percentage of energy saving (Figure 2-140): the energy 
saving due to a standard refurbishment is bigger than the saving variation between a standard 
refurbishment and an advanced refurbishment. In fact, national building stock is often characterized by 
low energy performance and even the application of basic energy renovations may provide significant 
increases in energy performance and consequent reduction of CO2 emission (the case of Italy is 
exemplificative of this trend). Thereby from an economic point of view it is more convenient to apply 
standard refurbishment measures at the national building stock than advanced ones that are the most 
expensive.  
It was highlighted that, even with standard refurbishments, energy saving over 45% can be achieved. 
As a consequence of this big saving potential, suitable policies to address energy retrofit actions of 
existing buildings are crucial. 
Finally, the quality of future model calculations will depend very much on the availability of statistical 
data. For reliable scenario analyses, information about the current state of the building stock and about 
the current trends is needed. The availability and regular update of the relevant statistical data will be 
an important basis for the development of energy strategies in the building sector. 

Original State Refurbishment 

QH,W,p tCO2 ∆QH,W,p 

∆% 

savings 
∆tCO2 

Reference 

building 

type 
[103GWh] [106t] [103GWh] [-] [106t] 

SFH.1 11.9 5.5 7.7 -65% 3.6 

SFH.2 12.7 5.9 4.8 -38% 2.2 

SFH.3 5.5 2.6 1.1 -20% 0.5 

APT.1 6.1 2.9 3.2 -52% 1.5 

APT.2 15.2 6.5 5.3 -35% 2.3 

APT.3 5.4 2.6 1 -19% 0.5 

 56.8 26 23.1 -41% 10.6 
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Figure 2-140: Comparison between annual energy saving potential by applying a standard 

refurbishment and an advanced one to the Danish, German and Italian building stock. 
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3.5 Experience 4: National/Regional investigation level, Single & Multifamily houses in 
Italy 

(N. Talà, TEBE Research Group, Department of Energy, Politecnico di Torino, Italy) 
 
3.5.1 Introduction 

The IEE-Project TABULA is aimed to create a harmonized structure for European Building 
Typologies, focusing on residential buildings: the topic of the research is how to collect, elaborate and 
analyze data characterizing national building stock in order to define “typical” buildings able to 
express a Building Typology. Different strategies with different level of information details can be 
adopted for “typical” building definition. 
In this work, the different approaches for defining the “building typologies” are tested. In particular, 
three methods are explained to show the developed benchmark models: the first method identifies 
building types based on several assumptions deduced by an expert without statistical data; the second 
method processes empirical data to pick out real buildings that are representative of the stock; finally, 
the third method provides a building that is the most probable of a group of buildings. 
Then, these approaches are applied to some Italian case studies: example building 
characteristics, statistical analysis on residential building database, Italian building typologies 
structures. 
 

Type of building Residential buildings 
Dimension 80÷400 m2 
Location Piedmont, Italy 
Thermal characteristics  Variable 
Type of observed spaces  Whole building 
Year of construction  Seven building age classes (1900÷2005) 
No. of floors  Variable (2÷10) 
Windows, orientation  Either N, E, S, W 
Window opening Variable 
Shading devices  Variable 
Sources of heat gains  - 
Activity, sex and age of occupants  Variable 
Origin of occupants  Variable 

 
3.5.2 Aim of the work 

The project objective is to create a harmonized structure on the building types in Europe. Each 
participant develops a “building types” classification at national level: each identified “building type” 
is representative of a defined period, size, etc. 
Another important outcome of the project is the development of an interactive web tool where the 
“building types” classification can be used with different objectives in the building energy sector: 
advice for energy retrofitting, energy performance assessment of building stocks, comparison of 
energy performance among buildings and building stocks. In particular the web tool contains a data 
structure of “building-types”, characterized by dimensions, shape factors, thermo-physical properties 
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(e.g. thermal transmittance of building components), efficiency of heating systems and other energy 
indicators. 
A crucial goal of the project is to estimate the energy consumption of residential building stocks at 
national level and, consequently, to predict the potential impact of energy efficiency measures in order 
to select effective strategies for upgrading existing buildings. To this aim, it is fundamental the 
application of a methodology for the definition of “building types”, which allows the classification of 
existing buildings in categories (“buildings-types”) to be analyzed and investigated. 
 
3.5.3 Database characteristics 

Number of buildings 7104 
Period of measurement Not applicable - 
Duration (days) - - 
Number of observed spaces  - - 
Number of observed spaces with 
window sensors 

- - 

 Items Interval 
IF1. Climate Heating Degree Days - 
IF2. Building envelope U-value, Window to wall ratio - 
IF3. Building service & Systems Type of space heating system: space heating – 

centralized/decentralized 
- 

IF4. Operation & Maintenance - - 
IF5. Indoor environmental quality - - 
IF6. Occupants’ activities and 
behavior 

- - 

IF7. Social and economical aspects - - 
 
The database contains records for more than 66.000 houses rated across Piedmont. The 66.000 house 
records represent the result of the information collected by EP certification schemes. 
The database contains information on physical characteristics and calculated energy requirements of 
each house. Each submission includes more than 40 information fields.  
The data includes: 

• location; 
• construction period; 
• form; 
• heated gross volume; 
• net floor area; 
• window average thermal transmittance; 
• calculated energy demands and indicators. 

 
The purpose of the EPCs database is also to gather the individual energy analyses data. Once an 
energy advisor successfully completes the energy assessment of a house, the resulting energy analysis 
data is collected and stored into the database. 
In order to validate the quality of data and to simplify the analysis the amount of data is restricted to 
only 7104 certificate schemes. In particular, apartment blocks, multi-family houses, terraced houses 
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and single-family houses have been considered. Such data are conveniently illustrated by means of the 
pie charts in Figure 2-141 and Figure 2-142. 
 

Figure 2-141: Split of Energy Performance 
Certificates for each building typology (66063 

certificates). 

Figure 2-142: Split of the selected Energy 
Performance Certificates for each building 

typology (7104 certificates). 
 
3.5.4 Methods applied for the data analysis  

In order to define a typical house useful for describing the thermal and geometric characteristics of a 
group of houses, the first step consists of identifying independent variables influencing the multitude 
of parameters that are specific to the building. 
The TABULA project has fixed three independent variables which are: location, age and form. In the 
specific Italian case, the three-dimensional space that generate appropriate reference building includes 
3 climatic zones, 7 ages and 4 forms of Italian housing (single-family homes, multi-family homes, 
terraced house, apartment block), the combinatorial process produces 84 building typologies. 
 
First Approach 
According to the first approach the definition of the representative building (Example Building) is 
based on construction period, size and region by an expert using rule-of-thumb to compensate the lack 
of statistical information.  
 
Second Approach 
The second method identifies the typical building (Real Building) employing a statistical analysis. 
Collected data are statistically elaborated to pick out the real building with geometrical and thermo-
physical characteristics similar to the average of the building sample. 
The Piedmont Regional Database of Energy Performance Certificates has been used to define the 
building typologies within the categories single family homes and terraced houses. 
The following steps outline the method adopted. 
 
Based on the available data, representative parameters of geometric and thermal features have been 
selected. These parameters are: volume, net floor area, envelope area to volume ratio, number of levels, 
number of dwellings, opaque envelope average thermal transmittance, window average thermal 
transmittance. 
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For each parameter the number of data were sufficient (at least 10 observations) to calculate statistical 
functions such as mean, median, 25th percentile, 75th percentile.  
Interquartile ranges (IQRs) are evaluated for all the parameters. This step allows to identify, for each 
parameter, the 50% of the buildings close to the median value. The intersection of all IQRs permits to 
select the single real building whose parameters are the closest to the median values. 
 
If this procedure gives more than one or no real building, IQRs can be tuned by means of suitable 
criteria in order to pick out only one real building. 
The available data of the real building identified by such procedure are not sufficient to perform 
energy analyses. Additional parameters have to be specified according to experience or statistical 
analysis. 
 
Third Approach 
The third method identifies the typical building (Theoretical Building) as an archetype, that is ‘‘a 
statistical composite of the features found within a category of buildings in the stock’’ (ECBCS,2004). 
The main steps for developing an archetype can be summarized as follows: 
 
Identification of primary independent variables (Xi) for describing the parameters (Pj) of a specific 
house (Bk) in the stock. For example the following parameters (Pj) that characterize the building can 
be considered: building external shape, internal layout, window to wall ratio, thermal insulation… 
On the other hand, among the independent variables (Xi) it is possible to consider: floor area, 
construction year, location, main heating source… 
Determination of the trend of each parameter based on independent variables by means of several 
engineering hypotheses, analysis or rule of thumb. This permits to Figure out which are the most 
significant independent variables xi for each parameter. 
Determination of the analytical relation between the jth parameter and its significant independent 
variables using statistical analysis (e.g. regression techniques). 
An example showing the application of this approach for the window average thermal transmittance 
(WTT). 
 

 
Figure 2-143: Thermal transmittance analysis. 
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As result of step 2, this specific parameter presents a significant relation with the floor area. A 
sampling of 339 buildings was selected from the Piedmont Regional Database of Energy Performance 
Certificates. The WTT values associated with the 1st quartile, mean, median and 3rd quartile are 
evaluated for each of the 10 groups defined by the deciles of the population in terms of floor area. In 
this particular case, each group contains approximately 34 buildings. Figure 2-143 presents the four 
dispersion values for each central value of these 10 groups. Regression curves and their analytical 
expression (STEP3) for the 1st quartile, mean, median and 3rd quartile are reported. 
 
3.5.5 Main results and discussion 

The prediction of energy consumption of residential building stock and the measure of energy savings 
due to efficient strategies at national level are very topical research items. To this aim, it is important 
to define a methodology for the generation of “building types”, representative of the categories to be 
investigated. It is fundamental to establish the rules to develop the building typology in order to 
compare the most suitable configurations and scenarios for the implementation of efficiency measures. 
The three methods introduced for defining the “building types” permits to face, in practice, the 
problem of the definition of “building typologies” when different level of information details are 
available. 
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