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1. General overview

1.1 Key points

What is covered

Assessment of potential application of statistigablysis for the prediction of total energy use in
buildings and for the identification of the relatewst significant influencing factors. This has mee
covered first by an extended literature review]oleed by the collection and critical analysis of
activities carried out by ST-C working group wittference to: individual buildings and large buitglin
stocks up to regional/national level.

A deep connection has been established betweeraskut and Task Force on Occupant Behavior,
related to the explanation of OB through stati$tarad probabilistic methodologies, and Subtask A,
for the definition of the structure of the databfé'siatabase typologies”)

Why it is important

To select a suitable methodology, the “scale” af #nalysis is essential. To this aim, three main
descriptors have to be considered: number of mgklio be analyzed (from an individual building to
very large building stocks), number of items ddsnog each building and time frequency of the
collected time dependent parameters (annual tcheubly time frequency). This consideration fits
with the proposal of the 3 Level Database in STelated to the complexity of the database (“database
typologies”).

The main fields of application for statistical aysas are:
* energy diagnosis, in case of individual buildings,
e energy consumption targeting and benchmarkingage of large building stocks,
» tendency for energy policies, in case of analyaisegional/national level.

Key points learned

* The availability of suitable databases is a fundatalepre-condition to perform consistent
analyses.

» Even if using statistical tools, do not forget gtg/sical meaning of the parameters.

» Energy use can very often be described by a fewn miuencing factors.

* Among the influencing factors, at present only & fdatabases contain items related to
occupant behavior description.

* Among the statistical models, regression modelsvamly used for total energy use ranging
from simple linear regression to complex neuraivoek.

» Often, increasing model complexity does not inceghg prediction accuracy.

Conclusions

Suitable statistical models to apply for energy uaealysis have been highlighted, and
recommendations about the proper application ofdtfierent models as a function of the goal of the
analysis are offered. They depend on the time gdglgamic models are for time scale of hours, stati
or statistical models are for time scale of monthg/ears) and on the space scale (the variance is
larger for individual buildings than for a largeosk of buildings). The most important factors
influencing total energy have been highlighted ai.\Whe potentialities in using these models ig/ve
high for both individual buildings and large buildi stocks, but the pre-conditions are the clear



definition of the goal of the analysis and the kility of suitable data where the influencing tfars
required for the analysis are collected.

» Itis important to the community that we assesbéedpbtential applications of the tools to the
field of total energy use.

» Benefit of the fit between building and occupanbdeéor of energy saving, cost saving, and
thermal comfort.

* We highlighted the most important parameters amaveld that models are different in terms
of space and time.



1.2 Introduction

Interest in the analysis of actual building eneopynsumption has rapidly increased during recent
years when the attention of researchers and téahsibas started to move from the calculated energy
demand to the real energy consumption of buildifidss crucial shift is strictly linked (not onlypt
ICT technologies related to energy use that weveldeed in the last few years.

ICT technologies are addressing a wide diffusionenoergy and indoor environment long term
monitoring systems, using both wired and wireleshihologies. Thanks to the strong improvement in
data acquisition and transmission technologies,ibw possible to have a real time picture of gper
consumption and indoor environmental quality lewelbuildings. But, it is fundamental to establah
clever monitoring plan in order to collect data emntly and enable the subsequent data analyses
aimed at identifying the main influencing factofa this goal, it is really important to clearly def
which parameters have to be monitored, where theosg have to be placed, how many sensors are
needed and what is the suitable frequency of samplThese decisions are strictly related to the
available budget and to the results of a cost-lisnahalysis. Due to these reasons, the identidicat

of the most relevant influencing factor is alsodamental for reducing the number of parameters to
be monitored.

Buildings are becoming more and more complex sdifferent energy carriers provide energy uses
for satisfying all the services of the building. €lpossibility of placing sensors in the building to
measure all of the influencing factors relatedrtergy use will allow for the collection of the recpd
data. The possibility to set a platform to collaaid to elaborate data allows for a huge amount of
information, but when moving to the reality a ptanobtain the right interpretation of the data and
information is needed. The need to analyze actuglgy consumption is mainly due to the difficulties
in making a realistic assessment of building enelgyand when the calculation model is not suitably
calibrated based on detailed knowledge of the bedtling behavior. In this way, a crucial role is
represented by occupant behavior, especially whdppisg from calculated data of energy
consumption in buildings to real energy consumptiboreover, tendencies and statistics about
building energy consumptions may help to understdrel actual dynamics of building energy
consumption.

This change of perspective from standard calculatelding energy performances to actual measured
building energy uses is nowadays an important topresearch. As well known, in the first decade of
this century much emphasis has been placed on dfieitibn of indicators for characterizing the
energy performance of a building. An example of #ifort given by the technical and research
community, together with the political bodies, lie tlarge movement connected to the development
and dissemination of the building energy certifimat in Europe, starting from the Energy
Performance of Building Directive of 2002.

According to the definition proposed in the Dirgeti building energy performance has been mainly
interpreted as an indicator of the building enebgavior related to “standard” operative boundary
conditions. The word “standard” highlights a crligiasumption in the calculation procedures andl it i
clearly explained in the picture proposed at they wtart-up of IEA-ECBCS Annex 53 (see Figure 1-
1). Thus, the starting point was to analyze treotétical energy consumption, a shift toward the
actual energy use is needed and all the influerfeicigrs related to energy use should be assessed.
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Figure 1-1: Influencing factors on total energy usduildings (IEA-EBC Annex 53)
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In Figure 1-1, the building energy consumptionueficing factors are grouped into 6 main categories.
The three categories listed in the left side ofglature (climate, envelope, equipment) are related
variables influencing “intrinsic” building energyegdormance which is calculated by fixing standard
conditions for the other three categories listetheright side of the picture (operation & mairgteoe,
indoor environmental conditions, occupant behavioa} are specifically related to the actual buigdi
functioning. As a consequence, the building engrggyormance is calculated assuming that all of the
analyzed building systems and functions behave lljdeander the same standardized
functioning/working conditions.

This approach allows a coherent comparison of thédibg energy performance calculated for
different buildings but this energy performanceas strictly related to the actual energy consuompti
When the attention moves to real energy consumptiirnthe six categories of influencing factors
have to be taken into account to give a complateipg; moreover, a seventh category (social aspects
is also mentioned by Annex 53. As demonstratedractice, buildings located in the same place
(same climate) with the same building envelope system characteristics, and consequently with the
same value of the building energy performance indexy show high differences in the real energy
consumption (see Figure 1-2) due to:

» different actual operation and maintenance,
» different actual indoor environmental quality level
» different behavior of the occupants (ranging framergy conscious to energy unconscious).
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Figure 1-2: Frequency distribution of heat consuimptin 290 investigated “identical” houses in
Denmark, Henningsen, 1999)

The increased number of considered influencingofacfrom three (related to energy performance) to
six (related to energy use), as shown in Figure Aighly amplified the complexity of the problem,
especially because the last three categories ameected to parameters which are not deterministic
and constant, but can change stochastically with.ti

This consideration demonstrates the difficultiesoagted with realistically predicting building ege
consumption using energy calculation tools suckyammic energy simulations that are based on so
called “direct (calculation) methods”. In fact,ig very difficult to suitably describe the stochast
variation of the input parameters for the buildiegergy calculations connected to the three last
categories of influencing factors mentioned above.

At the same time, some important questions emageding the following:

» Do all the factors have the same magnitude of itnpaduilding energy consumption?
* Which are the factors showing the largest influemeéduilding energy consumption?
* Which are the dominant factors in terms of effatbailding total energy consumption?

To find an answer to these questions, it is necgsta primarily or exclusively focus of the

investigations on those factors showing the grédtepact. Moreover, the identification of those
factors may allow the development of prediction mledbased on so called “inverse modeling”
techniques (this specific issue will be discussethe following chapters).

In order to perform this kind of analysis, it isnflamental to establish a database where the
information about both the energy consumption amel parameters related to the six influencing
factors are collected. One of the key elements wdiatistical based tools are used for analysis is t
clearly define to subject of the study. The diagia Figure 1-3 shows the main investigation fields
It represents on its axes the building sample dgienand the amount of information for each



building analyzed that is required to obtain suéatata for the analysis. For example, if the bodd
sample is represented by only one building (an iViddal building”) lots of detailed information
should be gathered in order to have suitable indtion. The collective experience of the Annex 53
partners presented in Chapter 3, shows differgmestyof information is sometimes collected, from
very detailed up to the breakdown of each singdalfenergy use. On the contrary, in the case of
regional or national analysis, little informatiobcait each building in the sample is needed to deovi
some basic but interesting statistical analys@attidg from these considerations, some questides:ar

* How detailed does the database need to be forlmalcting?
* What is the format of the database?
*  Which method should be used to analyze the dat@base

These questions are strongly connected with the gbaur analysis. This picture shows how to
synthesize the purpose of the analysis.

If the goal is to analyze the individual building show its energy consumption behavior, the
benchmark is the building itself although an absolobenchmark may still prove useful (i.e. the
behavior of the building from one year to the nésdm one month to the next). Here, by collecting
the suitable amount of information it is possildentake a detailed energy diagnosis of the examined
building. In fact, this approach is typically usedmake an energy diagnosis of the building aner aft
to plan energy saving measure.

When moving to a large building stock, an initiadag) is to find homogenous buildings that are
grouped together in a large stock, and determingedarget values, baselines and benchmarks for the
building energy uses. In this specific case, wiier@xample aggregated data for energy consumption
is gathered, the idea is to make statistical armsalgsprovide information that can also be usetul f
planning energy saving actions on a national scale.

The analysis of an individual building and the oaél analysis of building stocks have differentlgoa
For individual buildings the goal is to address #islity of a single building to have continuous
improvements in its energy behavior. At the regloor national level the goal is to define some
specific guidelines for suitable energy policiesdoergy retrofit actions.

10
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Figure 1-3: Main field of investigations relatedttee building sample size

Another key aspect regards not only how much daia the database but also the frequency of the
time related parameters. They typically range ftooarly or sub-hourly data (detailed monitoring in
one specific individual building) to yearly data (have a general overview of the tendencies of a
country).

One of the first goals of this annex is to provalelear picture of the different databases and thei
possible applications.

A database is a fundamental element required befidlizing a data driven approach for statistical
analysis. A fundamental aim of this data drivenrapph is to find relationships between influencing
factors and energy use in buildings. In this anrleg,influencing factors are grouped into six main
categories (Figure 1-1) which are families of iefiging factors. For each of them, it should be
defined which items are to be collected (e.g. demmeans outdoor temperature, HDD, CDD, etc.)
and then verify if a relationship exists betweemitifluencing factors and the final energy use.

As underlined in the following chapters, the datsbmay show different characteristics according to
the subject of the study (from individual buildingp to national building stocks), the categories of
influencing factors considered (from climate ordyal six categories), the variables collected imith
each specific category, as well as the frequendhetime dependent variables and consumption data
collected (from annual to 15 minute intervals).

Moreover, the creation of a suitable database asfitlst and essential step to perform a number of
statistical analyses addressed to describe theduddjthe study.

As mentioned, the possible applications of sta@$tanalysis may be divided into two big fields: to
analyze individual buildings, or to focus the as&yon a large building stock. Firstly, statistiosild

11



be used to describe the object of the study (datbeei statistics) providing a clear descriptiontio$
actual energy consumption and then to find out tvlaiee the dominant influencing factors in relation
to the dependent variable (energy use) and indegpendriables (the influencing factors). When the
most important influencing factors are known, statal analysis could be used to build a prediction
model.

Statistics can also be applied for creating refegeouildings for a given building stock that can be
implemented directly in building energy simulatimols.

Another possible application of statistics is tdimke “modules” meant to provide statistical inputs
directly to a building energy simulation tool. Fetample, when dealing with occupant behavior (e.g.
the adjustment of a thermostat) the problem is sdmé non deterministic, but is related to the
probability of doing a certain action when someimmmental parameters are present. So the input
data (probability) for the direct simulation to@ud be defined through a statistical approach.

According to this general scheme, the applicatibrstatistical analysis can be structured in three
levels of investigations (Figure 1-4). The firstdé of investigation is a basic level. Since an ano

of data is available, first of all tendencies rethto the dataset should be identified. The use of
statistical parameters (mean value, standard dewjagtc.), frequency distributions of the collette
data, and etc. can provide significant informatiordefine a clear picture of the subject of thedgtu
it's the use of statistics to describe. The sedemdl of investigation utilizes statistics to fimadit the
influencing factors that have a dominant effectemergy uses. If the most dominant influencing
factors can be reduced to a limited number of patars, it's possible to find out the relationship
between these parameters and the final energyQasesequently, in the third level of investigation a
very quick and robust prediction model can be koilprovide information about the energy behavior
of the building.

12
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2. Statistical analyses and prediction methods: genefrapproaches

2.1 Database structure

The need to define a reference structure for thabdae is a crucial step. It is also evident from t
results of a literature review focused on intewrzdi research journals dealing with statisticalyses
and inverse modeling approaches for predictionuilding energy consumption. In order to provide
homogeneous information, the analyzed papers hese brganized using a specific format described
below.

First of all, it is important to remark that thebgect on which the analysis will focus has to beadly
defined at the very beginning of the investigatimocess. Forcing a subdivision into families, the
subject of the statistical investigation may bedbd as follows:

* Individual building; an analysis focused on one c#ipe single building (or a group of
individual buildings);

» Large building stocks: an analysis of a group afistically representative buildings, typically
showing similarities in terms of use (residentidfice, school, etc.);

* Regional/national level analyses: typically statatanalyses developed from a database with
a large number of buildings on a national basis.

The discussion presented here refers to residgstiaile and multifamily houses) and office (small
and large) buildings, according to the goals of &nbB3; however, the approach can be extended to
other building classes.

In general, to perform suitable analyses, the nunabebuildings and the (minimum) amount of
information required to describe each buildingratated, as shown in Figure 2-.

“Ideal” databa§e
~

§ n
=
S ‘-——!yt'n
1. E Building sample dimension I ""-_.
Detailed information about Fewinfo buta LARGE number of
one INDIVIDUAL BUILDING BUILDINGS

Figure 2-1: Diagram of databases information acdagito building sample dimension
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When a single individual building is the subjecttbé investigation, a high number of parameters
describing its energy behavior is required (onédmg, but with lots of information) and the analys
can be performed on each specific energy end us¢h®contrary, when analyses are performed at a
national level, a lot of buildings are available bescribed by few parameters (lots of buildings, b
with less information).

When the subject of the study is chosen, the datalay be identified using two main characteristics
1. Categories of influencing factors which are cobelctaccording to six categories previously
defined,
2. Sampling frequency of the time dependent variafdeasumptions and parameters belonging
to the six categories of influencing factors).

Considering point 1 above, typically the databdsecture can refer to 3 “levels”:

» Level 1 — categories of influencing factors: climagnvelope, systems,

 Level 2 — categories of influencing factors: Levkl+ control & maintenance, indoor
environmental conditions,

» Level 3 - categories of influencing factors: Lefet occupant behavior.

The three levels may also contain information abletseventh factor (social aspects).
Considering point 2 above, typically the databasecture can collect time dependent variables as
follows:

* Level 1* — frequency: annual
* Level 2* — frequency: monthly
» Level 3* — frequency: hourly (or sub-hourly)

It should be noted that the time frequency of thbected data is also related to the subject of the
study. For investigations at the national/regioleaiel, annual data is typically acceptable, but for
advanced analyses of individual buildings, sub-lowlata is required. As a consequence, the
databases used in practice can be classified angaw their reference structure and placed witnin
matrix as shown in Table 2-1.

Table 2-1: Database structure according to categerof influencing factors and time frequency of
dependent variables.

Categories of influencing factors

Level 1 Level 2 Level 3

Level 1

Level 2

Climate Envelope systems Control&Maintenance

. Occupant behaviour
Indoor environmenta

conditions

cy of the
depende
nt

variable

time
Annual

15



Monthly

Hourly
sub-hourly)

The database structure is highly related to thisstal and prediction methods that can be adopted

for the data analyses and elaborations, and coaa#lguwith the results obtained through the
investigations performed.

2.1.1 Database structure and literature review

The database structure previously introduced isl tisalefine a criterion for the classification bt

selected and analyzed papers. In particular, eaamieed paper is characterized by the following
items:

* authors,

e title,

» database typologies (i.e. to which kind of datalvaference structure it refers),

» adopted method for the data elaboration for eneaggumption analysis/prediction,
* subject of the analysis,

» goal of the analysis.

This information is synthesized as presented inerak? where, for the sake of brevity, only a fefw o
the more than 50 analyzed papers are shown. Thie efarataloguing papers is still ongoing and the
table is continuously updated. The literature neviesults, organized using the formatefz —! &
REBROHY £R/A, , are available in electronic format.

Table 2-2: Organized structure of the literatureview activity

Author Title Influencing Adopted method Subject of the Goal of the analysis
factors analysis
categories
Merih Modeling of 3+ Engineering Large building Comparative assessment
Aydinalp, V. residential energy method/conditional stocks/residential of the three methods
Ismet Ugursal, consumption at the demand analysis
Alan S. Fung  national level method/artificial

neutral network

H. A residential end- 2 Engineering  method Large building Forecast building energy
Farahbakhsh, use energy (CREEM) stocks/residential consumption

V. I. Ugursal, consumption

A. S. Fung model for Canada

16



Merih Comparison of 3+ Conditional demand Large building Forecast building energy
Aydinalp- neural network, analysis method stocks/residential consumption
Koksal, V. conditional
Ismet Ugursal demand analysis,

and  engineering

approaches

for modeling end-

use energy

consumption

in the residential

sector

Merih Modeling of the 3+ Artificial neutral Large building Forecast building energy
Aydinalp, V. space and domestic network stocks/residential consumption
Ismet Ugursal hot-water heating
b, Alan S. energy-
Fung consumption
in the residential
sector using neural

networks
Merih Modeling of the 3+ Artificial neutral Large building Forecast building energy
Aydinalp, V. appliance, lighting, network stocks/residential consumption

Ismet Ugursal, and space-cooling

Alan S. Fung  energy
consumptions  in
the residential
sector using neural
networks

Note: in “Influencing factors categories”, the syohb- means that data referring to “social aspects”
was also collected.

2.2 Statistical analyses for description of the examirtesubject

The objective of the present chapter is to outlireemain preliminary analyses used in the preparati
phase of examination of the three main subjectsafysis of Annex 53, which are the following:

* Individual buildings,
* Large building stocks,
* Regional/national analyses.

Each of these subjects of study has different goatgying from diagnosis of the energy consumption
in a specific building to development of buildingsiyn guides or supporting strategic energy plannin
policies. Here we do not intend to describe in itlekee statistical methods and theory, covered in
hundreds of specialized books, but intend to oetbnscope of statistical descriptors and analyses
appropriate for each of the above mentioned subjacstudy.

One of the main aims of this analysis is to sumpeathe available data sets, to facilitate the

comparison between them and to account for varidépendences in the data. The resulting analysis
aimed at learning and gaining insight into the papons the data represent is done by inferential

statistics and is the subject of the following dieap.

The methods used in the energy consumption anafgsiddescription of the data set include

approaches from descriptive statistics and ExpioyaData Analysis (EDA). Descriptive statistics
[44, 52] provides summaries about the data sangydsabout the observations that have been made.

17



Such summaries may be either quantitative (i.e.nsamy statistics), or visual (i.e. simple-to-

understand graphs). These summaries may eithertf@rasis of the initial description of the data a

part of a more extensive statistical analysis,h@ytmay be sufficient in and of themselves for a
particular investigation. The Exploratory Data Msés [53] found in the Engineering Statistics

Handbook [21] is an approach for data analysisehgtloys a variety of techniques, mostly graphical,
to provide insight into the data set, uncover ulyiley structure and distributions, extract impottan

variables and detect anomalies.

The objectives and the statistical analyses focrifg#on of each of the subjects of examination are
discussed separately in sequence. The list of seslgresented here is by no means exhaustive and is
meant for orientation of the analysts. The selectib the most appropriate method depends on the
specific problem.

2.2.1 Individual buildings

For analysis of individual buildings, normally ada amount of information is collected, comprising
detailed building characteristics, climatic datagmy uses and high frequency energy consumption
data ranging from several minutes to daily or miyntlata intervals. Usually the objective of thedstu

is to analyze the energy consumption, to find tre@nninfluence factors in order to alter them and
achieve energy savings. Another purpose of thiysisanay be to model the building and to compare
the expected with the observed behavior for detgaperational faults or predict savings.

Whatever the purpose of the study is, the datalsmild be reduced to some representative parameters
in order to obtain conclusions. Often, building lgees starts with a comparison of relevant energy
consumption parameters with reference values (lmeardts) in order rapidly to situate the building in
question within the range of consumption of simitarnldings and to estimate its energy saving
potential. In comparison, when modelling, it is @&xary to find relations between variables withm t
data set and this is first done using exploratoiysis techniques.

When the energy consumption of an individual buiddis studied, the statistical analysis to describe
the data set is expected to provide some of tHeviolg: a breakdown of the energy consumption by
uses (heating, lightning, equipment, etc.), by g@neources (electricity, gas, etc.), by periodsisé
(occupied/not occupied, etc.), energy use intexssifEUI) and also other appropriate quantitative
parameters that might be considered such as cotisummmrmalized by number of users, volume, etc.
The calculation of all these descriptive statistasns part of the preliminary analysis.

To gain insight into the data set, different graphstatistical exploratory techniques can be used.

» Simple charts to visualize energy breakdowns aelparts and bar plots.

» Frequency distributions or histograms are oftendufm estimation of the probability
distribution of continuous variables. Frequencstrithutions can be plotted on an absolute or
relative basis for different parameters, (e.g. idetsemperature and internal temperature).

» Cumulative frequency distributions can be usedxjaress the probability of some occupant
behavior as a function of external influences, dgample window opening as a function of
outside temperature, or window blinds operatioa &mction of solar radiation level.

18



» Pareto charts offer the possibility to represemt thctors that contribute most to a given
consumption. ldentifying these factors will maximithe results.

e Scatter plots can reveal the relation between tamampeters in the dataset when there is an
interest in analyzing dependencies. They are ableshtow either linear or nonlinear
relationships between variables.

2.2.2  Large building stock

The objective of the analysis of large stocks oildings is to discover common characteristics of
building typologies and the main factors influemciheir energy consumption. The available data is
normally more reduced and with lower time frequemompared to individual buildings, but is
available for a large number of buildings of similzharacteristics. The results of the studies are
usually used for developing design guides or recemdations and best practices aiming at the
reduction of the energy consumption in new or exgsbuildings. Therefore, descriptive statistice ar
used to summarize the data set parameters andriiesgdike the range and the distribution withie th
data set. This permits the identification of thesmionportant variables and members of the set and
facilitates the prioritization of the measures.

In the studies of large building stocks the enecggpsumption’s representative parameters may be
similar to those in individual buildings, but inighcase the quantitative statistics for descriptoa
those characterizing the interval and the distidmitthe mean, standard deviation, first quarid.),
median or second quartile (Q2), third quartile (@& well as minimum and maximum values.

Some of the graphical exploratory and represemtaéohniques usually used are described below.
Box plots, or box-and-whisker plots, depict groopsumerical data using five numerical parameters:
smallest observation (sample minimum), lower gleafQ1), median (Q2), upper quartile (Q3) and
largest observation (sample maximum). Alternativen’s of boxplots can be used for identification of
outliers. Variations of boxplots can be found itedature [45, 16]. Histograms and cumulative
frequency distributions are used to plot or estenihé probability density of the variables of iet&r

A non-exhaustive summary of possible quantitativé graphical analysis technigues for description
of data sets is provided in Table 2-3.

2.2.3  Regional/national analyses

The regional/national analysis of building energgnsumption has the principle objective of
supporting energy planning and strategic energigigslin the mid and long term. In order to perform
the analyses, the energy consumption should betstad and studied by building typologies,
building use and energy type. Large-scale initeti (e.g. TABULA - Typology Approach for
Building Stock Energy Assessment) aim to developilding types” at the national level that are
representative of a defined period of constructgize, etc., which permit evaluation of the potanti
impact of energy saving policies and regulationataDis collected by extensive samples and usually
comprises annual or monthly consumption data, ¢lovdata, and complementary information about
city/region size, rent per capita, etc.

The statistics and analysis for description ofdhta sets are summarized in Table 2-3.

Table 2-3: Organized structure of the literatureview activity
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Statistics and analyses for description of the Subjects of study in Annex 53

examined subject Individual Large building| National / regional
buildings stocks analyses

Quantitative statistics for description

Breakdown of energy consumption by uses X

Breakdown of energy consumption by uses X X

(mean, median, standard deviation)

Breakdown of energy consumption by energy

types

Breakdown of energy consumption by energy X X

types (mean, median, standard deviation)

Breakdown of energy consumption by perigds

of use (day/night, occupied/not occupied, ..})

Breakdown of energy consumption by periads X X

of use (day/night, occupied/not occupied,

...)(mean, median, standard deviation)

Energy Use Intensities (EUI) (energy

consumption normalized by floor area,

number of users, ...)

Energy Use Intensities (EUI) (energy X X

consumption normalized by floor area,

number of users, ...) (mean, median, standard

deviation)

Graphical techniques for analysis

Bar plots, pie-charts X X X

Time series plots X

Frequency distribution, histograms X X X

Cumulative frequency distributions X X X

Scatter plots X X X

Pareto charts X X X

2.2.4 General overview

The studies previously presented offer a generaiview of the applications of statistical analyais

different scales of investigation, with differenbajs, ranging from diagnosis of the energy
consumption in a specific building to developingmfilding design guides or supporting strategic
energy planning policies. The time step of the emiftid data, useful for energy consumption

predictions, is also related to the subject ofgtuely: for investigations addressed to nationailbmes

level annual or monthly data are typically accefgabut for the analysis of an individual building

hourly to monthly intervals are typically required.

It is therefore clear that the time step of theadmtailable for the analysis is a function of sa#l¢he
investigation and therefore of the goal of the gsial As a consequence, different influencing fecto
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can be highlighted as relevant for each scale wdstigation, as well as the most suitable modet typ
to be used for the energy use prediction.

The table below (Table 2-4) summarizes the maituémicing factors and the most suitable models
used by different contributions presented here Wwhiere identified, based on the time step of the

available data and according to the goal of théyaizidentified by the scale of the investigation.

Table 2-4: Overview of main influencing factors andst suitable model used in the contributions

presented

Scale of investigatior

Timestep

Main influencing factor

Most suitable modé

Individual buildings

Hourly energy consumptio
Daily energy consumptioj
Monthly

consumption

energyl

Building geometry
Building physical characteristid
Climate (indoor/outdoor)
Occupancy (n° of users)
Users lyfestyle

Regression analysis:
4 inear
multivariate
logistic
partial least square
g-q plot
principal components

Artificial neural network

Ensembling methods

Large buildings

Monthly
consumption

energy

Annual energy consumptio

=

Building geometry
Building physical characteristid
Climate (outdoor)/location
Occupancy (n° of users)
Users lyfestyle

Purpose of the use

Regression analysis:
4 inear
multivariate
logistic
partial least square
multiple

Heating/Cooling operation

Neural network

Quantification methods

National Buildings

Monthly energy

consumption Annual energy

consumption

Building typology

Building physical characteristid
Location (Degree Days)
Period of construction
Heating/Cooling operation

Purpose of the use

Frequency distribution
<luster analysis
Hierarchical cluster techeg]
Monthly regression models|
Engineering models
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3. Statistical analyses for the determination of releant influencing factors

In the previous section, the database structurbdidding energy analysis is introduced. Regardtéss
the database level (Level 1, 2 or 3) and data &equ in the database, the goal is to develop models
and define relationships among variables. Duringlehdevelopment, variables are separated into two
groups: predictor (input) and response (targetugput) variables.

The influencing factors of building energy use greuped in six main categories. Relating to the
above mentioned variable classification it mearet the influencing factors are predictor (input)
variables, while the building energy use is a reaspdtarget or output) variable.

Sensitivity analysis can be used to find the redwafluencing factors. In fact, sensitivity anal/ss

the study of how the uncertainty in the output afi@del (numerical or otherwise) can be apportioned
to different sources of uncertainty in the mod@lin Sensitivity analysis provides information sash
factors that mostly contribute to the output vaeabthe region in the space of input factors foick

the model output is either maximum or minimum othivi pre-defined bounds, etc. In this way,
sensitivity analysis can be very useful for thepmse of determining the influencing factors of
building energy use. Further, in order to avoidradesiming the model, sensitivity analysis can help
to simplify models and find the most important ibfactors.

There are several possible procedures to performertainty and sensitivity analysis. These
procedures can be any of the following:

» Local methods, such as the simple derivative obtltput with respect to an input factor,

* A sampling based sensitivity where the model iscaterl repeatedly for combinations of
values sampled from the distribution (assumed knafithe input factors,

» Methods based on emulators (e.g. Bayesian) wherevdlue of the output, or directly the
value of the sensitivity measure of an input fadotreated as a stochastic process,

e Screening methods where the objective is to estirmdew active factors in models with many
factors (one of the most commonly used screeninfods is the elementary effect method),

* Methods based on Monte Carlo filtering.

Since Subtask C in Annex 53 is dealing with datganized into databases, a sampling based
sensitivity analysis is the most relevant methaddfining influencing factors of building energgeu

In this case, data from the databases are sampteanflysis. The starting point of statistical
sensitivity analysis is the generation of inputpattscatter plots, which are obtained by plottihg t
points. An example of using the scatter plot ins#gérnty analysis is shown in Figure 3-6 (from
Corgnati et al. 2008 [11]) and is used here fosiflation purposes only.
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Figure 3-1: Sensitivity analysis by using the smatiot

Finally, as shown in Figure 3- the sensitivity a3& is performed by repeating the regression arsly
on data in the different scatter plots. Regresaivalysis assesses the importance of the inputblaria
with respect to the uncertainty in the output congru.

To perform sensitivity and regression analysisesavrelations are necessary. The following relevan
equations for sensitivity and regression analyssswaitten based on [9]. Available data in a dasgba
can be analyzed in the following way. For example,observed database can consist of i samples.
These samples are organized in the matril¥ad’; ] wherei = 1, 2, ., n, X; is the matrix of the input
variables, and Yis the matrix of the output variables. The matixthe input variables consists of i
variables. The starting point of statistical samsit analysis is the generation of input-outpuatser
plots, which are obtained by plotting the pointsshewn in Figure 3-. The resulting scatter plots ar
then examined to find possible relations betweendhtputs Y and the inputsi’;. A more formal
analysis of the input-output relationship is tofpen regression analysis on a linear model between
the predicted outputYpreaict=a » @and the input parametexs, of the form

Fprsﬁ'icmd = bl} + Eﬁ-:-_b}- }L':;, (1)

In this case, sensitivity analysis implies searghfior input-output relationships by using regressio
analysis. The regression coefficients can be uzsletg with other indicators computed during the
regression analysis, to assess the importanceeointtividual input variable&; with respect to the
uncertainty in the output componeiiisThe higher the absolute value of the regressaefficient,
the higher the influence on the output. Furtheg talculated outpuf; in terms of the actual
parameter valuek; will have the following linear form:

Yz’ = ‘hl} + Eﬂ':ib}' ) Xi_;l' + g (2)

where &; denotes the error between the calculated andqgteeidvalue of the corresponding element of

the output. In order to get the best fit of theresgion model, it is necessary that the sum of the
squares of the deviation (shown in Equation 3)iismized.
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MinErzi{Yi_ Y‘,‘!ﬁl?"ﬂl‘l‘fﬂn‘.‘ﬂl‘l'}f (3)
Finally, to gage the goodness-of-fit of the modék coefficient of determination is used. The
goodness-of-fit of the model can be calculated as:

a Tk, (¥- Y“red[credjl
R*=1-—"—— 4
N T )

whereY, is the average value of the output variables. Mevadf 1 indicates a perfect correlation
between actual data and the regression equatizaluea of O indicates no correlation. For the puepos
of the building energy analysis, such as modelisigpaithe utility bill data, as a rule of thumb the
value of R? should never be less than 70 [14].
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4. Selection of the “model type” for energy use prediton and identification of the
prediction model parameters

4.1 Introduction

The classic approach to evaluate the building-HV&&tem energy use is based on the application of
a thermal model with known system structure andpeties as well as forcing variables (forward
approach). This model can be more or less compdgernding on the requested result accuracy and
output time step. For a tailored analysis the fodvapproach requires a detailed knowledge of the
physical phenomena (and their relative magnitudkiateractions) affecting the system behavior, and
the building system operating mode. ESP-r, BLASDHY2, TRNSYS and Energy Plus are the most
widespread simulation codes based on forward stionlanodels. The application of the “forward
approach” is widely discussed in ST-D of Annex 53.

A different approach for building energy analysisbased on the so called inverse or data-driven
models. In this case, the input (regressor varbded output variables (response) are known and
measured and the objective is to estimate the myprameters and to describe the mathematical
model. Using a data driven approach it is posdiblevaluate the as-built system performance (the
model parameters are calculated on the actualibgildnergy use) allowing often a more accurate
prediction of the energy consumption tendencieb vaspect to the forward approach.

The definition of the intended purpose of the hniddenergy analysis is the fundamental step for the
selection of the appropriate model approach. Theragzh must be able to match the analysis
requirements with sufficient accuracy. The requieats of building energy analysis may include

design optimization, energy audit, energy certifmaand so on. As mentioned, the different methods
can be grouped into two main families, accordinthtagoal of the analysis.

Forward approach: it is the classical presentation of any physidaémomena: it starts with the
definition of the energy model. Then the collectadrinput variables and finally the simulation rim
evaluate the output.

Data driven approach: it may be described as a bottom-up approachstaris with the measurement
of the force driven variables and of the outpuialaes, followed by the evaluation of some building
features called “system parameters” and the cortgtruof the data driven model that will be used to
assess the output for another set of force driveiables.
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Figure 4-1: Comparison between forward approach dath driven approach

By a data driven approach (inverse modeling), apiecal analysis is carried out on the building
energy behavior, and its relationship to one orenthiiving forces or parameters (regressor varigbles
This approach is referred to as a system identificaand parameter identification. To develop an
inverse model, it is necessary to carry out a nma#tieal description of the building or system, and
then identify the parameters of interest usingidteal analyses (estimations). The input and autpu
variables are known and measured, and the goal ietermine a mathematical description of the
relationship between the independent variables theddependent one. In contrast to the forward
approach, the data-driven approach is useful wherfdystem” has been built (that is, the “system”
exists and works) and actual performance data a&eglable for model development and/or
identification. The model parameters are evaluditech actual building performance and working
conditions, so the data driven model is fine f@ évaluation of as-built system performance, athgwi
more accurate prediction of future system perforreamder specific, real boundary conditions.

The data driven modeling, based on the applicatfostatistical tools, is adequate, among the others
for evaluating demand-side management (DSM) progrdam identify/test simple and conventional
energy conservation measures in existing buildiagd for baseline model development in energy
conservation measurement and verification (M&V)jects.

For example, with a data driven approach, it issfids to evaluate the causes of discrepancies of
actual consumption compared with design predictam$find the causes (such as anomalous weather
conditions, unintended building operation, impropgeration), or to verify energy savings due to a
retrofit action and not to other causes (e.g.vthather).

Data-driven methods for energy-use evaluation iildimgs can be classified into three categories
(ASHRAE [14]):

e empirical or “black-box” approach,

» calibrated simulation approach,
» ‘“gray-box” approach.
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In theempirical approach, the most accepted techniques use linear or chamige linear regression

to correlate energy use or peak demand as the depewrariable (output) with weather data and/or
other independent variables (input). A simple, adtivariate regression model, is operated between
measured energy use and the various influentiahrpaters (e.g., climatic variables, building
operation). This approach can be used with any sica¢e (monthly, daily, hourly sub-hourly). Single-
variate, multivariate, change point, Fourier sedes the artificial neural network (ANN) belong to
this category. Least-squares regression is the wwsmon regression technique to determine the
coefficients of the model. Such a purely statistegaproach is appropriate to evaluate demand side
management programs, identify energy conservatieaisores in an existing building and to develop a
baseline model in energy conservation measuremahtvarification projects while their value is
limited for diagnosis and online control.

The calibrated simulation approach uses an existing building simulation computer paog and
calibrates the physical inputs to the program st theasured energy use matches closely with that
predicted by the simulation program. In this wayhew the subject of the study is an individual
building, consistent predictions can be obtainede Talibration process (tuning) can be conducted
with monthly data or data that span a few weeks thesyear, but the level of accuracy decreasds wit
the decrease of data time frequency and increaBméninterval. Several difficulties prevent thesus
of simulation calibrated models to describe thd pssformance of the building: 1) arrangement of
weather data used by simulation programs, 2) ththeds selected to calibrate the model and 3) the
selected methods to measure the input parametguged for simulation (building mass, infiltration
coefficients, etc.). However the calibrated sirtiola approach requires a high level of user skilll a
knowledge in both, simulation and practical buifglimperation, a high degree of expertise, a vegelar
number of input parameters, and enormous amourasnoputing time, as well as financial resources.

The gray-box approach first formulates a physical model to represent $treicture or physical
configuration of the building or energy system, dhen identifies the representative parameters and
aggregated physical parameters and charactefistisgatistical analysis (Rabl and Riahle 1992).
Moreover, two primary types of inverse models dessified in the literature: steady state inverse
models and dynamic inverse models. The criteriowbith the classification is based is that dynamic
inverse models contain time-lagged variables.

All three approaches previously described can bgldmented through steady state and dynamic
models. Typical single and multiple linear regressifall under the “Black Box” steady-state models.

A model is dynamic when dependent or independerigias are explicitly expressed as functions of
time. Dynamic inverse models include equivalentrtted network analysis, ARMA models, Fourier
series models, machine learning, and artificialrakenetworks. The dynamic models are capable of
taking into account dynamic effects such as thermabks which traditionally have required the
solution of a set of differential equations. Theadivantages of dynamic inverse models are that they
are increasingly complex with respect to steadiestaodels and need more detailed measurements to
"tune” the model.

Table 4-1, proposed by ASHRAE, presents informattwat is useful for selecting an inverse model
where as a function of the model (diagnostics ellergy savings calculations - ES, design - De, and
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control - C), degree of difficulty in understandiagd applying the model, time scale for the datdus
by the model (hourly - H, daily - D, monthly - Mp@ sub-hourly - S), calculation time, input varidl
used by the models (temperature - T, humidity sélar - S, wind - W, time - t, thermal mass - tm),
and accuracy.

Table 4-1: Capabilities of different forward andtdadriven modeling methods (by ASHRAE,10)

Methods Usé Difficulty Time Calc. Variables® Accuracy
Scalé Time
Simple linear regression ES Simple D, M Veryfast T Low
Multiple linear regression D, ES Simple D, M Fast T,H,S,W,t Medium
ASHRAE bin method and ES Moderate H Fast T Medium
data-driven bin method
Change-point models D, ES Simple H, D, M Fast T Medium
ASHRAE TC 4.7 ES, DE Moderate H Medium T, S, tm Medium
modified bin method
Artificial neural networks| D, ES, Complex S,H Fast T,H,S,W,t High
C tm
Thermal network D, ES, Complex S, H Fast T, S, tm High
C
Fourier series analysis D, ES, Moderate S, H Medium T,H, S, W, t High
C tm
ARMA model D, ES, Moderate S, H Medium T, H, S, W, t High
C tm
Modal analysis D, ES, Complex S, H Medium T,H, S, W, t High
C tm
Differential equation D, ES, Complex S, H Fast T,H,S,W,t High
C tm
Computer simulation D, ES, Very S,H Slow T,H,S,W,t] Medium
(component-based) C, DE complex tm
(fixed schematic) D, ES, Very H Slow T,H,S, W, t| Medium
DE complex tm
Computer emulation D, C Very S, H Very T,H, S, W,t High
complex slow tm

Notes:

%Use shown includes diagnostics (D), energy sawatmilations (ES), design (DE), and control (C).
®Time scales shown are hourly)( daily (), monthly M), and subhourlyS).

“Variables include temperatur€)( humidity ), solar §, wind (W), time (), and thermal massnf).

In Table 4-2, the methods for analyzing buildimgergy use are classified as either forward or data-
driven, and either steady-state or dynamic.

Table 4-2: Classification of analysis methods foilding energy use (by ASHRAE, [14])

Data-Driven |
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Empirical or Calibrated Physical or

Method Forward | Black- Simulation | Gray- Comments
Box Box
Steady-State Methods

Simple linear regression 0 X O O One dependent parameter, ope
(Kissock et al. 2002; Ruch and Claridge independent parameter. May have slgpe
1991) and y-intercept.
Multiple linear regression O X O O One dependent parameter, multiple
(Dhar 1995; Dhar et al. 1998, 19994, independent parameters.
1999b;
Katipamula et al. 1998; Sonderegger 1998)
Modified degree-day method X O O O Based on fixed reference temperature|of

18.3°C.
Variable-base degree-day method, or X X O X Variable base reference temperatures.
3-P change point models
(Fels 1986; Reddy et al. 1997; Sonderegper
1998)
Change-point models: 4-P, 5-P O X ad X Uses daily or monthly utility billing data
(Fels 1986; Kissock et al. 1992) and average period temperatures.
ASHRAE bin method and data-driven bjn X X O O Hours in temperature bin times load fpr
method that bin.
(Thamilseran and Haberl 1995)
ASHRAE TC 4.7 modified bin method X O O O Modified bin method with cooling loal
(Knebel 1983) factors.
Multistep parameter identification O O O X Uses daily data to determine overall heat
(Reddy et al. 1999) loss and ventilation of large buildings.

Dynamic methods

Thermal network X O O X Uses equivalent thermal parameters (data-
(Rabl 1988; Reddy 1989; Sonderegger driven mode).
1977)
Response factors X O O O Tabulated or as used in simulation
(Kusuda 1969; Mitalas 1968; Mitalas and programs.
Stephenson 1967; Stephenson and Mitdlas
1967)
Fourier analysis X O X X Frequency domain analysis convertible to
(Shurcliff 1984; Subbarao 1988) time domain.
ARMA model O ad ad X Autoregressive moving average (ARMA)
(Rabl 1988; Reddy 1989; Subbarao 1986 model.
PSTAR X O X X Combination of ARMA and Fourie
(Subbarao 1988) series; includes loads in time domain.
Modal analysis X O O X Building described by diagonalized
(Bacot et al. 1984; Rabl 1988) differential equation using nodes.
Differential equation ad O O X Analytical linear differential equation.
(Rabl 1988)
Computer simulation: DOE-2, BLAST] X ad X ad Hourly and  subhourly  simulatio
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EnergPlus programs with system models.
(Crawley et al. 2001; Haberl and Bou-

Saada 1998; Manke et al. 1996; Norford| et

al. 1994)

Computer emulation (HVACSIM+ X O O O Subhourly simulation programs.
TRNSYS)

(Clark 1985; Klein et al. 1994)

Artificial neural networks O X O O Connectionist models.

(Kreider and Haberl 1994; Kreider and

Wang 1991)

In general, the construction of data driven modsidased on the least-squares regression. The
considered model uses the least-squares regressiodetermine the regression coefficients.
Generalized least-squares regression seeks toagstihe model coefficients that minimize the sum of
the squared error between predicted and actuahaigms. The matrix of dependent observations,

Y is equal to the product of the matrix of indepemdobservations, X, and the matrix of estimated
regression coefficient§, plus an error term, E..

Y=Xﬁ+E (5)

Solving forf gives:

L=(X"X)TXTY (6)
To calculate the model residuals, the predictedieslof the dependent variabT%,, are computed
from:

Y = X8 @)
The matrix of residuals, E, is then computed from:

E=Y-Y (8)

The root mean squared error, RMSE, is computed:from

RMSE = ,/Z(Y s \/YTY "B XY (g
(n-p) (n-p)

where n is the number of data observations andheisumber of regression coefficients.
The root mean squared error of the model is a meaduhe scatter of the data around the model.
The matrix of the standard errors of the regressaefficients, S, is computed from:

S =RMSE/(XTX)™ (10)

The standard error of a regression coefficient measure of the uncertainty of the estimate of the
regression coefficient.
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The squared correlation coefficient, R2, is comgdtem:

, _Z(Y—\?)Z
RP=1 W (11)
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4.2 Steady-state inverse models

The simplest steady-state inverse model regresseshiy actual energy consumption data against
average outdoor air temperatures, or in generalooutclimate parameters. More robust and efficient
methods include multiple linear regression (MVRhagrge-point linear regression, and Variable-

Based Degree Day regressions. The advantageamfysgtate inverse models is that their use can be
automated and applied to large data sets whemxBmple, billed consumption data and average daily
temperatures are available.

Moreover, by the multivariate approach it is polesifo characterize building energy use with a few
available input variables. The model should contanables not affected by the retrofit and likedy
change from pre-retrofit to post-retrofit perio@ther variables, such as changes in operating hours
occupancy levels, should be included in the mofigheése are not energy conservation measures
(ECMSs) but variables that may change during the-petsofit period.

Proper care must be taken, however, when using M\dfels to predict energy consumption. In
general, the addition of independent variableshto rhodel will always increase the strength of the
correlation; however, the relative uncertainty rfgiard error) of each regression coefficient, armthe
its predictive value, will decrease. In additianulti-colinearity between independent variables
increases the uncertainty with which the valueshef regression coefficients are known. Singular
Value Decomposition [4] and Principle Component Keig [23; 50] have been shown to reduce the
effects of multi-colinearity.

Claridge [58] summarized the most common methodsd&veloping inverse models of measured
energy use. The primary methods include variabkebdegree-day (VBDD) models, multivariate
regression (MVR) models, change-point (CP) regoessinodels, and combination CP/VBDD/MVR
regression models.

In the following, on the basis of a literature mwvj some numerical algorithms and equations used to
find general least-squares regression for the rsadehtioned above are described.

In Leslie et al. [43] the results of an investigatiare presented to determine which factors related
climate, occupant productivity and time-related goaeters exert significant influence on energy
consumption. The regression model shows that gnemgsumption in general depends on heating
degree-days, production level, and labor forcengtie Data gathered included production level by
product class, heating degree-days, cooling dedmgs; energy consumed by fuel type, labor force,
direct and indirect man hours, etc. The best ptedi among competing parameters were selected
based on maximizing the adjusted multiple corretattoefficient. In general, heating degree-days
and cooling degree-days are the most importantngetex for predicting total energy consumption,
with labor force strength and production level pdivg additional explanatory power.

Katipamula et al. [36] found that a multi lineargression provides better accuracy than a single
variable model for modeling energy consumption. niylandependent variables have been used to
perform a MLR model including, cooling-degree ddysating-degree days, wind speed and direction,
humidity, refrigeration type, exhaust air, supply, average shading in winter, average shading in
summer and so on. Different buildings used difieredependent variables, some up to ten and others
as few as two. Nevertheless, MLR models based gmeering principles are difficult to develop
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because they require knowledge of the HVAC systparation and how it is related to other building
systems. Another disadvantage of MLR is the véggmbhould be independent of each other, which is
not the case in reality.

In Freire et al. [15] regression equations are usedoredicting energy consumption by means of
outdoor climate variables and HVAC systems propsrith an easier and more rapid way than building
energy simulation tools. The independent varialflaput data) are heating, ventilation and air
conditioning (HVAC) power, outdoor temperature,atdle humidity and total solar radiation. The
methodology for obtaining the regression equatisnbased, firstly, on defining a couple of linear
Multiple-Input/Single-Output (MISO) models, sincevd main outputs are involved, (i.e. indoor
temperature and relative humidity). Validation @dares have shown very good agreement between
the regression equations and the simulation tadbdéth winter and summer periods.

Abushakra et al. [1] showed the advantage of inodour driving variables in the hourly modeling
of the energy use which include (1) outdoor tempeea (2) outdoor specific humidity potential, (3)
lighting and receptacles, and (4) occupancy. Thisep showed that the occupancy variable can be
derived from the lighting and receptacles load ifgstthat are becoming more and more available.

In Catalina et al. [10] a development of regressiwdels is presented to predict the monthly heating
demand for the single-family residential sectortemperate climates, with the aim to be used by
architects or design engineers as support todlseivery first stage of their projects in findingeegy
efficient solutions. All the energy prediction mdsl&vere based on an extended database obtained by
dynamic simulations for 16 major cities of Frandde inputs for the regression models are the
building shape factor, the building envelope U-ealthe window to floor area ratio, the building éim
constant and the climate which is defined as fomatif the sol-air temperature and heating set-point

About the assessment of energy savings, the nragjlstforward way to measure energy savings is to
compare pre and post-retrofit energy use. This ateimplicitly assumes that the change in energy
consumption between the pre-retrofit and post-fietqeeriods is caused purely by the retrofit.
However, the energy consumption is also influenlogdther factors including weather conditions,
occupancy, internal loads and building operatingcedures which may change between the pre and
post-retrofit periods. If these changes are nosidared, savings determined by this simple method
will be erroneous [33]. The most common adjustnistussed in the literature [37] is for changing
weather conditions between the baseline and ptsifiteperiods through the use of the data driven
approach. In general, two types of measured sayiagtual and normalized, can be determined.
Actual savings [22; 12; 2] are calculated as tHéedince between the energy use predicted by the
baseline model and measured post-retrofit energyTse steps involved are:

* measure energy use and influential variables duhaedaseline period;

» create a mathematical model of baseline energpsisefunction of influential variables;

* measure energy use and influential variables duhiagost-retrofit period;

» apply influential variables from the post-retrgigriod to the baseline model to estimate what
energy use would have been without the retrofit;

» subtract the predicted baseline energy use fromnikasured post-retrofit energy use to
estimate savings.
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Kissock [40] describes a method for calculatiagilsgs from measured data using change-point
models for weather adjustment. It includes the miay$asis for change-point models in commercial
buildings, algorithms for change-point models, andethod to estimate the uncertainty of savings.
Normalized savings [50] estimate how much energwlds be saved during a ‘normalized’ year.
Calculating normalized savings requires develogirgiatistical model of energy use as a function of
influential variables for both the pre and postafit periods and then driving each model with
"normal" conditions to calculate the normalized @adrconsumption during each period.

In Haberl et al. [20] measured hourly data are usecbnstruct a baseline model. The data can then
be used to predict building consumption had theofietnot taken place. Measured post-retrofit data

are compared to predicted data to determine saviRggression models consist of billing and/or

monitored data, utilized in one-, two-, three-, fowr five-parameter change-point models, or MLR

models.

Kissock et al. [41] describe a procedure for ediimgaweather-adjusted retrofit savings using
ambient-temperature regression models. The apptepsse of both linear and change-point models
for measuring energy savings is also discussed. bié&mTemperature is used as the single
independent variable because it both eliminateblenes associated with multi-colinearity problems
and reduces data collection to a single easily isedjyparameter.
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4.3 Focuses

4.3.1 Multiple linear regression

4.3.2  Logistic regression analysis

While linear regression analyses the effect of anenore influencing variables, Xj, on a continuous
outcome variable, logistic regression analysis sedbe used when the outcome variable, Y, is
binary, e.g. either 0 or 1. The difference betwimear and logistic regression models is therebgt t
while the linear model describes the changes indimeome variable directly, the logistic model
describes the probability, p=P(Y=1), of the outcoragable being one of the two possible values. As
a consequence, even though the outcome varialidndsy, the probability, p, can take all values
between 0 and 1.

In general, a linear relationship between the qu@s-p) and the logarithm of the odds, called logit
log[p/(1-p)] is assumed, i.e.

Logit(p) = log[p/(1-p)] =a+pX, (12)
which is mathematically equivalent with

_ exp (x+8%)
P = i texp(atpn) [6] (13)

There are two possible applications to the statisinalysis of the total energy use: (1) as impodel

for occupant behavior in the forward approach,)rt¢ predict the probability of binary “energetica
events”. The former is described within the modgliaport of the Task-Force Occupant Behavior of
Annex 53 and not dealt with here. Applications tediato energetical events can be addressed to the
analysis

» of the probability of a building occupant to belatmgone of two groups, an energy-saving or
energy-wasting group [46, 42],

» of factors which influence the probability of aneegy usage above or below a certain
threshold level, e.g. the median of a number ofrggneisages, or electricity consumption
classes [17] or

» of the probability of a change in the energy usagg, due to retrofitting measures.

Except for a few applications as listed above,approach is not very common and linear regression

analysis is much more widespread. The reason t@saply in the continuous nature of energy usage,
which does not necessitate a logistic approach.
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4.3.3 Variable-Base Heating and Cooling Degree-Day Models

In the Variable-Base Heating and Cooling Degree-Bey algorithm finds the base-temperature or
balance point temperature that gives the beststtati fit between energy consumption and the
number of variable-base degree-days in each enmsgperiod.

The heating balance-point temperature is definedhastemperature at which the heat gain from
internal occupants and equipment balances heatthossagh the building envelope. At outdoor air
temperatures above the balance-point temperatoréhermal energy is needed for space heating.
Similarly, cooling energy use frequently increaassoutdoor air temperature increases above some
cooling balance-point temperature, below which p&cg cooling is hecessary.

In general, the closer the outdoor air temperasite T,,, the greater is the uncertainty. The degree-
day method, like any steady-state method, is defedor estimating consumption during mild
weather. In fact, consumption becomes most seasiivoccupant behavior and cannot be predicted
with certainty.

About variable-base heating and cooling degree+uayhod, IMT can find best-fit variable-base
degree-day models of type:

Y =B, + B, HDD(B:) (14)
Y =B, + B,CDD@;) (15)

where3; is the constant termf3, is the slope term, and HOBs) and CDD@s) are the number of
heating and cooling degree-days, respectively, dnheenergy data period calculated with base
temperaturg3;. The number of heating and cooling degree-dayséh eaergy data period of n days
is:

HDD(Bs) = > (53-T,))"  (16)
i=1
CDD@®By) = > (T, -B3)"  (17)
i=1
where Tis the average daily temperature.

4.3.4 Change-Point Models

There are several types of regression change paidels as a function of the type of HVAC-building
system analyzed:

(i) Two-Parameter Model (2-P), based on a simpkdlr regression of type:
Y =B+ B2 X1 (18)
where3; and 3, are regression coefficients, X5 the independent variable and Y is the dependent

variable. 2-P models are appropriate for modelim¢fding energy use that varies linearly with outdoo
air temperature.
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(i) Three-Parameter Cooling and Heating Models (3-f)characterized by a three-parameter
change-point models of the type described by Kisstal. [38]:

Ye = B1 + B2 (Xe-Bs)* and =B+ B2(X-B3) (19)

Where 3; is the constant ternf3; is the slope term, anfl; is the change-point. The () + and ( )-
notations indicate that the values of the pareithietm shall be set to zero when they are negative
and positive, respectively. 3P models are apprtpffier modeling building energy use that varies
linearly with an independent variable over partle# range of the independent variable and remains
constant over the other part. For example, 3PCelspdising outside air temperature as the
independent variable, are often appropriate for etind the whole-building electricity use in
residential electric air conditioning. SimilarlyPB models, using outside air temperature as the
independent variable, are often appropriate foretind heating energy use in residences with gas or
oil heating.

Also found is a combination of three-parameter anudti-variable regression models (3P-MVR), with
up to four independent variables, of the type:

Yo = B1 + Ba(Xe-Ba)t + BaXo + Bs Xz + Bs Xa  (20)
Yo =Br + Ba(Xi-B3) + BaXz + Bs Xz + Bs Xa (21)

where X is typically the external temperature, ang Xs and X, are optional independent variables.

(iif) Four-Parameter Model (4P), is of the typeaésed by Kissock et al. [39]:
Y = B1+ Ba(X, -Ba) + Ba(X,-Ba)* (22)
Where[3; is the constant ternfd; is the left slopefs is the right slope anfl, is the change point. An

inverse model can also consider a combination of-fmrameter multi-variable regression models
(4P-MVR), with up to three independent variabldshe type:

Y =By + Ba(X, -Ba) + Ba (X -Ba)t + BsXa + Bs X (23)
where X is typically temperature, and,)and X are optional independent variables.
Four-parameter models are appropriate for modeieating and cooling energy use in variable-air-
volume systems and/or in buildings with high latkrads. In addition, these models are sometimes
appropriate for describing non-linear heating aadliog consumption associated with hot-deck reset
schedules and economizer cycles [40].

(iv) Five-Parameter Model (5-P), described by:

Y =B+ B, (Xe-Ba) +Ba(Xe-Bs)t  (24)
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Wheref3; is the constant ternfd, is the left slopefs is the right slopef, is the left change point, and
Bs is the right change point. An inverse model caro asnsider a combination of five-parameter
multi-variable regression models (5P-MVR), withtopgwo independent variables, of the type:

Y =B+ B (Xi-Ba) + Ba(Xi-Bs)™ + Bs X2 (25)

where X is typically temperature and,Xs an optional independent variable. (5-P) modwgks
appropriate for modelling energy consumption data include both heating and cooling, such as
whole-building electricity data from buildings witklectric heat-pumps or both electric chillers and
electric resistance heating or fan electricity eongtion in variable-air-volume systems. In Tabl8,4-
the different model equations of the single-varidproach are described and they are also drawn in
Figure 4-2.

Table 4-3: Single-variate and change point modeigtie heating mode (ASHRAE, [14])

Model Type Independent Model equations Examples
Variable(s)
One-parameter or None E=4 Non-weather-sensitive demand
constant (1-P)
Two-parameter Temperature E=£+ 5(T)
(2-P)
Three-parameter Degree-days/ E=/41+ 5(DDgr) Seasonal weather-sensitive use
(3-P) Temperature E=B+ B(5-T)' (fuel in winter, electricity in
summer for cooling)
E=Si+B(T-4)"
Four-parameter Temperature E=8+B(B-T) - Energy use in commercial
change point (4-P) B(T-B)" buildings
E=Lut BB
T)'+B(T-A)"
Five-parameter Degree days/ E=L4- Heating and cooling supplied by
(5-P) (DD1y)+ 5(DD1c) same meter
Monthly mean E=L+5(8
temperature ) +5(T-53)"

Note DD denotes degree-days and T is monthly meag datldoor dry-bulb temperature.

Cooling Heating Cooling Heating B2
Energy Energy B Energy Bs Energy
Use Use 1 Use Use
B2 B —— B B
B2 5
B,

Outside Outside Be outside Ba Outside
Temperature Temperature Temperature Temperature

Cooling Heating Cooing

Energy Energy B2 Energy
Use J Use Use
8 B2 B —— B Bs
: * B,
B outside Bs Outside Ba Bs outside
Temperature Temperature Temperature
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Figure 4-2: Top row-left: 2P cooling and heating deds. Second row from top-left: 3P cooling and
heating models. Top row-right: 4P cooling and hegtmodels. Second row from top-right: 5P
heating and cooling model.
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4.4 Dynamic Inverse Models

Dynamic inverse models represent sophisticated doah inverse models. The various existing
methodologies include, among the others:

«  ARMA models,
e Fourier series,
o Artificial Neural Networks — ANNS.

These models take into account the dynamic effesityy the time variation of the parameters as a key
aspect for understanding the energy behavior ofathalyzed system. These models are used to
process inter-correlated forcing functions or inetegent parameters.

Dynamic inverse models are capable of modeling ¢exngystems which are dependent on more than
one independent parameter, on the other hand dtgyre more measurements to develop the model.
Among the previous list of dynamic inverse mod@slNs represent the most used tool for their
accuracy for modeling and forecasting and for thatomated implementation in commercial software.
As a consequence, a larger discussion is addrésgddNs in this report.
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4.5 Focuses
451 Avrtificial neural network

The ANNSs are inductive models that represent agrradtive approach with respect to the deductive
models. In building energy modeling, the ANNs asedias surrogate of analytic computer codes to
evaluate the energy flow and system performaneetbey are useful for forecasting and modeling.
The ANNSs learn from key information patterns allagifor the discovery of complex relationships
between the variables. The ANNs allow robust preicgseven from noisy data. On the other hand
they provide a limited knowledge of process mecmasi

It is well-known from literature that one of the stdnteresting features of neural models is their
ability to handle even incomplete data. Severatlisgihave shown that in some cases forecasting
models for energy consumption based on neural nksnare more accurate, even if more complex
than those based on multiple linear regressionbrfefly summarized below, ANNs take inspiration
from neural systems.

Biological and artificial neurons and artificial meal network principles

Figure 4-3 shows a simplified model of the struetof the biological neuron. The main body of the

cell is called the "soma" where the nucleus is gdlacThe cell body has fibers attached to it called
dendrites that receive signals from other neurson' is the single long fiber which spreads from

the soma and extends into fibers connecting to nwhgr neurons at the synaptic junction. Each
neuron receives stimuli from other neighboring wasrand produces output when inputs overcome
the threshold limit that a neuron can hold.

Dendriles

Axon

-
l'o other neurons

Membrane Axon from

/ another neuron

Figure 4-3: Simplified model of the structure of thiological neuron

Synapse

An artificial neural network is a massively parblistributed processor that has a large number of
artificial neurons interconnected through weighteghaptic connections. Connections can be
"adjusted" through a network training process based given pattern rather than on predefined rules
In other words, this process allows the networKetarn the “rule” on which is based a physical

phenomenon starting from known situations and apiplyp new situations. This feature and the

relative simplicity of implementation and progranmgiiencourages the application in prediction tasks.
In addition, the use of a nonlinear model allowss idtentification of interactions between indepertden

variables without exploiting complex models. A redunetwork architecture commonly used is the

Multi Layer Perceptrons. Its basic structure cassis a set of units organized in layers; each elgm
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produces its output applying an activation functiora weighted linear combination of input signals.
The weights of this linear combination are thossoemited with connections that affect the neuron.
The activation functionf,.;, determines a relationship between the activatiothefneuron and its

output.
The equation for a single layer with one neuronlmamvritten in the form:

y= fACT[ZWj ij (26)
e

From the functional point of view the above equati@scribes the following model:

\

[Z.:ij j] I L Z.:"jxj]
' w =1 s

.Xl

Figure 4-4: Activation function applied to surﬁm@dad

In the following we describe the most used feedvéyd architecture. The feed-forward neural
network presents the neurons arranged in layefsiedirons in a layer are connected to all neurons i
the next layers through uni-directional weightetké. The neurons of the input layer do not perform
computation, but only feed input information to theurons of the first hidden layer. The last layer

represents the output from which the response efnétwork comes. The neuron outmjﬁ is
computed by passing the weighted sumjsi( are the weights) of its inpu'[e]-s_1 by a activation

. S
function f

0 = f gcr{z'wﬁ m} @27)
i=1

wheres denotes tha" layer and=1,...,ns with ns the number of neurons of the! layer. The weights
are obtained using the “forward propagation” anackward propagation” algorithms.
ANNSs have been used successfully in the followietg$:

» classification, i.e. pattern recognition,

» forecasting, i.e. electrical and thermal load fasging,
» optimal control, i.e. adaptive control,

e optimization, i.e. building energy management.

With reference to the application of neural netvgoidk energy systems, ANNs have been employed to
model solar water heating systems. Kalogirou ef2dl} developed an ANN to forecast useful energy
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produced from the system and the stored water teatype rise. The input data related to size and
performance characteristics were: the collectoa,asrage-tank U-value, tank type, storage volume
and type of system. In addition, the input datatezl to the weather conditions were real measures o
total daily solar radiation, mean ambient air terappge and the water temperature in the storadge tan
at the beginning of a day. The whole data set v8ad to train the ANN in order to treat unusual sase
The predictions were confined within 10% and it whswn that the proposed method presents a high
grade of accuracy.

In Kalogirou et al.[25], the long term performarmediction of solar domestic water heating systems
was also evaluated using ANNs. The authors testddhaodeled thirty thermosyphon solar domestic
water heating systems following the procedures apatl in the standard 1ISO 9459-2 at three
locations in Greece. Monthly data, calculated thigftoa modeling program based on standard 1SO
9459-2, were used to develop two artificial nemetivorks.

The output of the first network was the solar eggmgpduced from the system under suitable physical
constrains (see Kalogirou et al. [26] for detadsd the output of the second network was the solar
energy produced from the system and the averagetiguaf hot water per month at demand
temperatures of 35 and 40°C. The input data in mattworks were geometric and performance
characteristics of each system and various clinu#tta. In the second network, among the other input
was also used the demand temperature.

The statistical coefficient of multiple determiraats corresponding to the first network was equal to
0.9993 while for the second network for the twopatitparameters the same coefficient was 0.9848
and 0.9926, respectively. Also, the accuracy oflisteon was investigated using unknown data. In the
first case the coefficient was equal to 0.9913 ianthe second case was equal to 0.9733 and 0.9940
for the two output parameters.

With reference to the application of neural netvgotl individual buildings, in Datta et al. [57] the
authors proposed the use of an ANN to forecastredg demand in a supermarket. In a supermarket
the main demand categories are refrigeration systelMAC equipment and lighting. In addition the
independent variables that affect the consumptiathe refrigeration systems are building envelope;
temperature and humidity and the internal enviramiadeconditions.

The authors claim that in trying to minimize energgnsumption the various energy consuming
subsystems cannot be viewed in isolation but ith&ractions should be considered.

For this reason, the authors suggest that ANNsflarible tools and not system specific. As a
consequence ANNs can be adapted to different Imgildypes, HVAC systems and refrigeration
equipment.

The Figure 4-5 below shows the prediction accuratythe ANNs modeling. The building is a

Safeway supermarket situated in Airdrie, Scotlarite ANN was used to predict electricity demand
in the supermarket. The actual measured data tedleftom the store was used to develop feed-
forward neural networks including three layers: amgut, one hidden, and one output layer. Seven
networks were constructed by varying the numbenpfit variables, i.e. input nodes, n. The number
of nodes of the hidden layer was varied as a fanctf the input nodes as (2n + 1). The back-
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propagation algorithm was employed to train all tieéworks in order to minimize the mean square
error between the output of the network and theaatalue.

200

——+—— Tamget valus

......... Predicted value using AMNs

Predicted walue using regression

Electricity Consumed [ kW)
FeY
(=)

— e wm = = v = = wm = v = = = rm wm r= = = r= = o= = r= =

Pattern Sequence

Figure 4-5: Prediction accuracy of the ANNs modglin

The following input variables were included:

* Day,

e Time,

* Temperature and relative humidity in the store,

» External air temperature and humidity,

e Total electrical power consumption of the store,

» Electrical power consumption of the refrigeratiacks,
* Gas Consumption,

* Underfloor heating flow and return temperatures.

The authors noted that all the networks have a gooelation between the target and network output.
The network trained with data extending on a longarod, i.e. 4 months instead of the 1 month used
for the other networks, presented the lowest catici coefficient and highest RMS error. This
confirms that using a short-term data-set may bicant to reliably predict electrical demand in
commercial stores on a half hour time scale.

The authors estimated the weight of each independable on the prediction accuracy of the
dependent variable. They noted the time of dayhés rmost significant independent variable. This
result led to the conclusion that more detailedyamis should be conducted to determine the relative
importance of each variable.
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The prediction performance of ANNs and regressioalysis based on the same data sets were
compared using the correlation coefficient. Theaation coefficient was equal to 0.95 for the ANNs
as compared to 0.79 for regression analysis.

In Kalogirou et al. [27], ANNs were used for forstiag the building's heating loads using the
minimum amount of input data listed below. Theadaded were:

» areas of windows, walls, partitions and floors,

» type of windows and walls,

» classification on whether the space has roof dinggi
» design room temperature.

The network output was the heating load. More tinamhundred cases were considered to develop a
network capable of working with only some basiclding areas and a differentiation of the various
elements according to their structure. Indicativesdlues were used to describe different building
materials. The network yielded predictions withi.9The authors concluded that this error did not
influence the sizing of the actual radiator cho&erthe particular room because commercial radéator
are available only with different heating loadse($&logirou et al. [29, 28, 30, 31, 32, 33, 34, 2]
more details).

With reference to the application of neural netvgottx a large building stock, Aydinalp-Koksal et al.
[2] investigated the use of a CDA method and ofANN to model the residential end-use energy
consumption. In particular, the ability of the Cwodel to predict and to characterize the energy end
uses was compared with those of an ANN.

Two data sources were used for the developmeteo€DA and ANN model: the data from the 1993
Survey of Households Energy Use (SHEU, Statisttzmada, 1993) database and the 1993 heating
and cooling degree day data for the cities in whifeh households in the CDA data set are located.
Actually, SHEU database is the most exhaustivegynezlated database for the Canadian residential
sector. The data were collected by conducting &ouaisurvey that included several questions (376).
The database was representative of the Canadiainigostock, and contains detailed information on
the building construction, space heating/cooling &HW heating equipment, household appliance
and some socioeconomic characteristics of the @tgdor 8767 households in Canada. At the same
time, the electricity billing data and natural dailing data of the households in the 1993 SHEU
database were used to develop the models. The evemtld ground-temperature data for the locations
were obtained from Environment Canada (http://wwscremc.ec.gc.ca/cmc/index_e.html). The
variables used in this study are presented below.

» Heating degree days,

» Cooling degree days,

» Ground temperature,

» Dwelling type,

» Heated living area,

» Dwelling year construction,
* Windows type,
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* Door types,

* Presence of heated basements, attic or garage,
* Presence of programmable thermostat,

» Presence of heat recovery ventilation system,

» Efficiency of the boiler,

» Age of the boiler,

* Number of each appliance present in the house,
» Total number of incandescent, fluorescent, andgeddamps,
» Central A/C unit usage,

* Window A/C unit usage,

* Average indoor temperature,

* Number of occupants,

* Presence at home,

* Dwelling ownership,

*  Number of adults,

* Number of children.

The information is related to climate (HDD, CDD,c#& mean daily temperature, etc.), building
envelope (heated living area, dwelling constructipgar, number of windows, etc.), building
equipment (thermostat, boiler, ventilation systenagpliances, etc.), building operation and
maintenance (age of the boiler, central A/C un#ggs etc.), indoor environmental quality (average
indoor temperature, etc.), occupant behavior (nurobeccupants, presence at home, etc.) and socio-
economic factors (households income, size of areastdence, etc.).

The ANN developed to model the end-use energy eopsan consists of three separate models:

* NN model for appliance, lighting and space cooliagC) end-use energy consumption,
* NN model for space heating (SH) end-use energywopton,
* NN model for domestic hot water (DHW) heating ersg-energy consumption.

On the basis of the data gathered from differemtres, the input and output of the model were
defined. The input units of the networks used wgathered from the SHEU database in order to
describe the construction details and usage claistits of the houses; specifications and usage of
space heating and cooling equipment applianceslighting; socioeconomic characteristics of the
occupants; and weather characteristics. Obviotis¢ynumber and choice of input units was different
for each of the three networks performed, and tfits were selected on the basis of their contridouti
on the prediction performance of the end-use nétwbhe results of the three performed networks
showed a good prediction accuracy with a very tpgdiction performance, but the accuracy was
strictly related to the quantity of the informationthe training datasets. The models were perfdrme
by isolating the effects of several socioeconondctdrs on end-use energy consumption. This
capability represents an interesting result, bexaishe impact of human behavior on the building
energy consumption.

The authors highlighted that both methods couldde=l to model residential energy consumption, but
each of them had different capabilities, advantages disadvantages. The major advantages of the
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CDA model are that it is easier to develop andge and does not require detailed data. On the other
hand, it is a regression-based model. For thisoreafe database has to contain a large number of
dwellings and the models do not provide much detaflexibility. By consequence, its capability to
assess the impact of energy conservation poswbiig very limited. An important point to highligh

in this comparison is related to socioeconomic dixct Although it is possible to include
socioeconomic parameters in the model (if such agvailable in the database), the CDA model is
unable to evaluate the effects of some of thesanpeters (dwelling ownership and size of area of
residence) because of the limited number of vaembhcluded in the model, due to statistical
considerations. On the other hand, ANNs are ablevtduate the effects of several socio-economic
factors on end-use energy consumption, such aseholds income, dwelling type and ownership,
number of children and adults, and area of resiglenc
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4.5.2 Data Mining

Data mining is proposed as a tool to analyze medsobwilding-related data. Data mining techniques
excel at automatically analyzing huge amounts td flar useful but hidden information.

What is data mining?

In the past decade, different definitions of daiaing have been given by various researchers. For
example, Hand et al. [23] define data mining a® “dmalysis of large observational data sets to find
unsuspected relationships and to summarize the idat@vel ways so that data owners can fully
understand and make use of the data.” As definedChiena et al. [8], data mining is “an
interdisciplinary field bringing together technigudrom machine learning, pattern recognition,
statistics, databases, and visualization to addiessissue of information extraction from large
databases.” Based on these statements, it can mauded that data mining is essentially a
combination of multi-disciplinary approaches. Itaen used to extract hidden but useful patterns
from a large volume of data and to transform thi& @ao knowledge that could benefit further work.
Data mining has been successfully applied in maigngific, medical, and application domains (e.qg.,
banking, bioinformatics, new materials identificawj fraud detection, and telecommunications). It
was also identified by the MIT Technology ReviewlTM echnology Review, 2001) as one of the ten
emerging technologies that may change the worldedtwidely accepted and implemented data
mining techniques are: data classification, clusteanalysis, and association rule mining.

Some basic terms and concepts in relation to datanim
Useful terminologies include the following:

» Dataset, Attribute, and Instance: a dataset i afsgata items. It is roughly equivalent to a
two-dimensional (i.e. column and row) spreadsheetatabase table, as shown in Figure 4-6.
Each database table consists of a set of attrifuseslly in different columns or fields) and
stores a large set of instances (usually in roweeoords). Consider an HVAC system with
100 monitored parameters. Each parameter can lsdeoed an attribute, and a record of all
these parameters in a specific time point can beidered an instance.

Attribute ) )
u Attribute 1 Attribute m
Instance
Instance 1 X X
Instance i X X
Instance j X X
Instance n X X

Figure 4-6: A schematic diagram of dataset, atttdand instance

» Target attribute and Predictor attribute: Targ#ilaite is the attribute predicted as a function
of other attributes (i.e., predictor attributesyr Example, the building energy consumption is
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the target attribute, and could be predicted amatifon of building-related parameters such as
floor area and number of occupants (i.e., prediatisibutes).

Data mining techniques: Data Classification and Bemn Tree

Overview of Decision Tree

The decision tree method is one of the most comynoséd data mining methods [47, 22]. It uses a
flowchart-like tree structure to segregate a setdafa into various predefined classes, thereby
providing the description, categorization, and galiEation of given datasets. As a logical model, a
decision tree shows how the value of a target bbriaan be predicted by using the values of afset o
predictor variables. Figure 4-7 presents a decisiea indicating whether residents turn room air
conditioners (RAC) on or off in their rooms in tkeoling season. For this example, assume 100
instances are used to build this decision tree,thatdeach instance has three attributes: outdoor a
temperature, room occupancy, and the operating staRAC.

Root node
Outdoor air temperature <26 °C ?
Le'eaf node Internal node
RAC is turned off Empty room?
(60/5) .

No

Leaf node Leaf node
RAC is turned off RAC is turned on
(10) (30)

Figure 4-7: Schematic illustration of a simple hitpetical decision tree

The target variable for the above decision treRASC operating states, with potential states being
classified as either turned on or off. The predietariables are outdoor air temperature26 °C or >
26°C) and room occupancy (empty or not). As shawfigure 4-7, a decision tree consists of three
kinds of nodes: root node, internal node, and heafe. Root nodes and internal nodes denote a binary
split test on an attribute while leaf nodes repnesa outcome of the classification (i.e., a catiegd
target label). Moreover, the numbers in the parsgh at the end of each leaf node depict the number
of instances in this leaf. If some leaf nodes ampure (i.e., some records are misclassified ini® th
node), the number of misclassified instances valgbven after a slash. For example, (60/5) in ¢fie |
most leaf in Figure 4-7 means that among the 6@mtes having an outdoor temperature lower than
or equal to 26 °C that have been classified aetupnif, 5 of them actually have the value turned on
By using this decision tree, the RAC operatingestdassification (i.e., turn on or turn off) can be
predicted. For example, if the outdoor air tempeeis higher than 26 °C and the room is not empty,
occupants will turn the RAC on; otherwise, theyl witn it off.

Decision tree generation is in general a two-steggss, hamely learning and classification, as show

in Figure 4-8. In the learning process, the colldaata is split into two subsets, a training set a
testing set. Creation of the training and testiats $s an important part of evaluating data mining
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models. Usually, most of the instances in the degtabare arbitrarily selected for training and the
remaining instances are used for testing. Notettietraining and testing sets should come from the
same population but should be disjointed. Thereasibn tree generation algorithm takes the trginin
data as an input, with the corresponding outputdei decision tree. Commonly used decision tree
generation algorithms include 1D3 [47], classifioatand regression trees (CART) [7], and C4.5 [48].
In the classification process, the accuracy ofdb&ined decision tree is first evaluated by making
predictions against test data. The accuracy ofcéside tree is measured by comparing the predicted
target values with the true target values of tis data. If the accuracy is considered acceptéinde,
decision tree can be applied to a new datasetdesiication and prediction; otherwise, the reafawn
any inaccuracies should be identified and corredimgnsolutions should be adopted to address these
problems.

Decision Tree Generation

Splitting dataset into
training data and test data

Learning
A

Analyzing training data by a decision tree |
algorithm and generating decision tree |

A

Estimating the accuracy of obtained
decision tree using test data

Identifying reasons
and finding solutions

. Accuracy is considered acceptable ?
Classfication Y P

Applying decision tree to future data

Figure 4-8: Procedure of decision tree generation

The procedure for generating a decision tree fiwaritaining data is explained as follows. Initiakyl
instances in the training data are grouped togeitter a single partition. At each iteration the
algorithm chooses a predictor attribute that caastbseparate the target class values in the ipartit
The ability of a predictor attribute to separate thrget class values is measured based on dvustri
selection criterion, which can be referred to itadaining textbooks. After a predictor attribute is
chosen, the algorithm splits the partition intoldlpartitions such that each child partition consathe
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same value of the chosen selected attribute. Thiside tree algorithm iteratively splits a partitio
and stops when any one of the following terminatingditions is met.

(1) All instances in a partition share the same tactpets value. Thus, the class label of the leaf
node is the target class value.

(2) There are no more instances for a particular vafue predictor variable. In this case, a lead
node is created with the majority class value @pharent partition.

With reference to the application of data clasatiimn to a large building stock, Yu et al. [54]
developed a building energy demand predictive mbdekd on the decision tree method. The model
can estimate residential building energy perforreaimdexes by modeling building energy use
intensity (EUI) levels (either high or low). Its ropetitive advantage over other widely used modeling
techniques, such as regression methods and ANNoatetles in the ability of the method to generate
accurate predictive models with interpretable flbeut-like tree structures that enable users tokdjuic
extract useful information.

One data source was used for the development oflébision-tree based model: a project entitled
“Investigation on Energy Consumption of Residentsoder Japan” which was carried out by the
Architecture Institute of Japan from December 2@DRlovember 2004. For this project, field surveys
on energy-related data and other relevant infonatvere carried out in 80 residential buildings
located in six different districts in Japan: Hold@i Tohoku, Hokuriku, Kanto, Kansai, and Kyushu.
The following information was collected:

» Energy end use of all kinds of fuel used by thédiug at different time intervals;
* Indoor environment parameters every 15 minutes;

* Household characteristics;

» Other issues such as occupant behaviors and esavig measures;

The following input variables were included:

* Annual average air temperature,

* House type (detached or apartment),

» Construction type (wood or non-wood),

* Floor area,

* Heat loss coefficient,

» Equivalent leakage area,

* Number of occupants,

* Space heating mode (electric or non-electric),

» Hot water supply mode (electric or non-electric),

» Kitchen equipment mode (electric or non-electric).

The output variables were building energy perforoegindexes (EUI levels, either high or low).

The model accuracy of predicting the EUI level®29. For comparison, prediction models using
regression methods and ANN methods were also deeelbased on the same data set. The accuracy
of the obtained regression model and ANN model wi& and 88%, respectively. However, it
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should be mentioned that the decision-tree modelocdy predict the EUI levels while the regression
model and ANN model can predict the EUI values. dwer, a lot of useful information on building
energy performance improvement can be extractan tiee developed model. For example, it can
automatically identify and rank significant influgng factors of building EUI. Also, the model can
provide the combination of significant factors asllvas the threshold values that will lead to high
building energy performance. Based on such infdonatdesigners can clearly realize which
parameter deserves extra attention when desigmiagge efficient buildings. Another advantage is
that it can be utilized by users without requirafpt of computation knowledge. The generated model
and the derived information, could greatly benkfitilding owners and designers; one crucial benefit
is the reduction of building energy consumption.

Cluster Analysis and the K-means Algorithm

Cluster analysis is the process of grouping thesagions into classes or clusters so that objects
the same cluster have a high similarity, while otgen different clusters have a low similaritygére
4-9 shows a clustering schema based on a hypathbtidding data table. It contains various energy-
related variables such as outdoor air temperafjran(d building heat loss coefficient (HLC).

The data table consists of m attributes and nmiests Each attribute represents a variable and each
instance denotes a building. All the instances gnauped into w clusters. These w clusters are
homogeneous internally and heterogeneous betwéenedit clusters [22]. Such internal cohesion and
external separation are based upon the m attribittémplies that these attributes have the most
similar holistic effects on the building energy feemance of the same cluster buildings, while the
effects are significantly distinct for the buildm@ different clusters.

Instance Attribute 1 Attribute m
(T (HLC)

Instance 1 X < -

Cluster 1 X X X
Instance i X X "

X X X

Instance j X < "

Cluster w X X X
Instance n X < X

Figure 4-9: Clustering scheme

The dissimilarity between observations in the dasabis calculated using the distance between them
in the cluster analysis. In this study, the mosthewmnly used distance measure, Euclidean distance,
was used [22]:

d(k,)) = \-'f(xki —x11)* + (X — 3 )P+ ot (e — x)° (28)

where k = (xk1, xk2, ..., xkn) and | = (xI1, xI2, .xIn) are buildings. xk1, ..., xkn are n parameters of
k and xI1, ..., xIn are n parameters of |.
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Commonly used clustering algorithms include K-meafisnedoids, and CLARANS [22]. In this
study, we employed the K-means, along with the egmmce data mining program RapidMiner [49],
to perform cluster analysis due to its high efindg and wide applicability.

The K-means algorithm is one of the simplest partimethods to solve clustering problems. Given a
dataset (D) containing w objects, the K-means #lgor aims to partition these w objects into k
clusters with two restraints: 1) the center of ealtster is the mean position of all objects inttha
cluster, 2) each object has been assigned to tiséeclwith the closest center. This algorithm csissi
of given steps: 1) Randomly select k observatioosfD as the initial cluster centers, 2) Calcutat
distance between each remaining observation antl @agally chosen center, 3) Assign each
remaining observation to the cluster with the cdvosenter, 4) Recalculate the mean values (i.e., th
cluster centers) of the new clusters, and 5) Repesgis 2 to 4 until the algorithm converges, maanin
that the cluster centers do not change.

In RapidMiner, the performance of a clustering &lfpon is evaluated by the Davies Bouldin index
(DBI) [13]. This index is defined as the ratio betsum of average distance inside clusters tontista
between clusters.

!
1 Ri+Rj]
DBI =~ E max,-,}-[l‘w—hj_ (29)
i=1

wheren is the number of clusters; Bhd R are the average distance inside cluster i andecljidy
averaging the distance between each cluster obietthe cluster center, respectively, ang iMthe
distance between cluster centers. The DBI is sihatlach cluster is comparatively dense while
different clusters are far from each other. Coneatjy, a smaller DBI indicates better performance.

It should be mentioned that the K-means is semsitiv initial cluster centers. Therefore, different
values should be tried so as to obtain the minirsum of the distances within a cluster. At the same
time, the number of clusters should be specifiegidvance.

With reference to the application of data clustgtio a large building stock, Yu et al. [55] deveddpa
methodology for examining the influences of occugashavior on building energy consumption.
Various factors influence building energy consuimptat the same time, leading to a lack of precision
when identifying the individual effects of occupabehavior. Such effects can be shown by
‘removing’ the effects of influencing factors uratdd to occupant behavior.

The same data source as the decision-tree basesl masl used for the development of the clustering
methodology. The methodology is realized by clustesimilar buildings into various groups based
on the influencing factors unrelated to occupatabvér, so that for each building in the same group
these factors have similar effects on building gpeconsumption. Accordingly, the effects of
occupant behavior can be identified accuratelhasé groups. The identification of building groigs
the most important element of this methodology idinglachieved mainly via cluster analysis.

The following input variables were included.

* Annual mean air temperature
* Annual mean relative humidity
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e Annual mean wind speed

* Annual mean global solar radiation

» House types (detached or apartment)

e Building area

* Equivalent leakage area

* Heat loss coefficient

* Number of occupants

* Space heating mode (electric or non-electric)

* Hot water supply mode (electric or non-electric)

» Kitchen equipment mode (electric or non-electric)

The output was the effects of occupant behaviowedbkas behavior patterns. Particularly,
the following data analysis was conducted.

» The analysis of the average annual EUI of diffeed-use loads for each cluster (this mainly
indicates the degree to which various behavioruarte the total building energy
consumption).

* The analysis of the variability in annual EUI offdient end-use loads for each cluster (A
large variability implies that there still remaigeeat potential for energy saving by improving
occupant behavior related to the end-load uses).

» The analysis of monthly variations of average esé-loads for each cluster (this mainly
indicates the effects of occupant behavior oveh tiate and buildings).

* A reference building for each cluster is definedd ahen the energy-saving potential of
buildings in each cluster can be evaluated by coisgrawith the reference building.

» The analysis of monthly average indoor temperatfr@n air-conditioned room of three
typical buildings.

Association Rule Mining

In data mining, association rules are often usepoesent patterns of parameters that are frelguent
associated together. An example is given to ilatetthe concept of association rules. Assume @&t 1
occupants live in 100 different rooms in the saméding and each room has both a window and a
door. Moreover, 40 occupants open the windows @hdcupants open the doors. If 10 occupants
open both the windows and doors simultaneousharitbe calculated that these 10 occupants account
for 10% of all the building occupants (10/100 = )0%nd 25% of the occupants who open windows
(10/40 = 25%). Then, the information that occupavtie open windows also tend to open doors at the
same time can be represented in the following &stsoa rule:

open_windows — open_doors [support = 10%, confidence = 25%)] (30)

In this statement, support and confidence are eyepldo indicate the validity and certainty of this

association rule. Different users or domain expeds set different thresholds for support and
confidence according to their own requirementsolider to discover useful knowledge eventually.
Accordingly, the association rule mining (ARM) cha defined as finding out association rules that
satisfy the predefined minimum support and configefnom a given database.
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Mathematically, support and confidence can be taled by probability, P(XY), and conditional
probability, P(Y|X), respectively (X denotes theeqmise and Y denotes the consequence in the
sequence). That is,

support(X —=Y) = P(XuUY) (31)
confident(X = ¥) = P(Y|X] (32)

Another concept, lift, which is similar to confides is commonly used to demonstrate the correlation
between the occurrence of X and Y when conductieghRM. Mathematically,

P(IUY)  B(Y|X)

Lftﬂ{ - Y} = PEPY) - =]

(33)

Particularly, a lift value greater than 1 represemtpositive correlation (the higher this valuetls
more likely that X coexists with Y, and there igertain relationship between X and Y [22] while a
lift value less than 1 represents a negative catioel). If the value is equal to 1, i.e. , the acence of

X is independent of the occurrence of Y, then thereo correlation between X and Y. Commonly
used ARM algorithms include the Apriori algorithmmdathe frequent-pattern growth (FP-growth)
algorithm [22]. The specific algorithm for thesethmds are presented in [22].

With reference to the application of associatiote mnining to individual buildings, Yu et al. [56]
developed a methodology for examining all assamigtiand correlations among building operational
data, thereby discovering useful knowledge aboatgnconservation.

One data source was used for the development aihtibodology: the EV pavilion in Montreal, a
complex building that mainly includes offices andtvabs,.. This building consists of two parts: the
ENCS part (17 floors) and the VA part (12 flooBpth parts have their own VAV air-conditioning
systems. The historical data of the air-conditignsystems in both parts were collected from
December 2006 to May 2009. In total, 61 parameaiEisVAC system operation were monitored at a
15-minute interval.

The input variables were the above-mentioned 6amaters. The output was all associations and
correlations among these parameters. Through angljfzese associations and correlations, we can:

» identify the energy waste in the air-conditionirygtem (e.g., it was found that, in the fresh air
handling units, the heat added to the fresh air fivastransferred to humidifier water, and
then simply drained to municipal sewage. This epesgste was confirmed through the
discussion with the building operator),

» detect the equipment faults (e.g., it was found, thiher the fan 1 or the fan 2, or both of
them, in a fresh air handling unit has a fault),

e propose low/no cost strategies for saving energyystem operation (e.g., it was found that,
the existing operating strategy of extracting exair from the building was to use two of
three fans while the other one was turned off. Gitleat these three fans are identical and
controlled by individual VSD, one possible energyiag method is to use all these three fans
instead of two of them).
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The results obtained could help us better undeasbaiiiding operation and provide opportunities for
energy conservation.
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5. Application of the prediction model for building energy use assessment

5.1 General introduction to case studies

Thanks to the contributions of the partners paréiting in ST-C, a classification of the developed
activities about the assessment of Total Energyibduildings by “inverse (data-driven) methods”
has been performed. Common questions are facduinantributions related to the most appropriate
statistical analysis method according to the damldavel, the fixed goals of the analysis and the
dominant influencing factors. This section hightigthe relationships among:

* Subiject of the analysis,

* Goal of the analysis,

e Structure of the database,

* Adopted method of analysis.

The ongoing activities in Sub—Task C could be dididaccording to sub-task structure, with reference
to the subject of the analysis:

e Large Building Stocks,
* Individual Buildings,
* National or Regional level.

Annex 53 partners uniformly faced the two topicgusing only in one topic or on both, for a total o
17 contributions. In particular, Austria, Francegr@any, and Norway focused on the analysis of
individual buildings, while Italy and Japan focusad both individual buildings and a large building
stock, and Canada and Spain contributed for a langding stock. The national or regional analysis
issue was faced by ltaly (regional database), Cmatonal database) and the U.S. (national daggbas
as well. As defined in the Annex 53 project, the-GTanalysis of the partners should focus on
residential or office buildings. In the followinglile (Table 5-1), the building typologies includad
the analysis of the provided contributions arergedied.

Table 5-1: Distribution by subject of the analysighe obtained contributions

Partner Individual buildings
Residential Office Other
CETHIL, INSA de Lyon Synthetic
(France) 1 school
Karlsruhe Institute of Synthetic and Extended Synthetic and Extended
Technology (Germany) 1 Multi- family house 1 Multi-storey office
NTNU Trondheim Synthetic and Extended
(Norway) 1 Office building
Synthetic
) ) 1 Office building
Polytechnic of Turin (ltaly)
Extended
1 Office building

57



Synthetic and Extended

Tohoku University (Japan 6 houses
(single and multi-family)
. Synthetic Synthetic
TU Wien ] . . -
) 3 Multi- family houses 2 Office buildings
(Austria) . .
8 Single- family houses
Partner Large building stock
Residential Office Other
. Synthetic and Extended
CIMNE (Spain) . o
9 office buildings
Synthetic and Extended
Concordia University o
4 contributions
(Canada)
80 houses
(single and multi-family)
) ) Synthetic and Extended
Polytechnic of Turin (ltaly) ) o
4000 office buildings
Synthetic and Extended
. . 682 houses Synthetic and Extended
Tohoku University (Japan - -
80 houses 1121 office buildings
(single and multi-family)
Tohoku University Synthetic and Extended
(China houses) 635 houses
Partner National/Regional level
Residential Office Other
Tsinghua University Extended

(China) 4600 office buildings
Synthetic and Extended
LBNL (U.S)) 824000 offices

(CBECS database)

Polytechnic of Turin (ltaly)

Synthetic and Extended
66000 houses
(Piedmont regional

database)

The goal of the analysis of the provided contriii can be synthetically divided by:

» description of subject (statistical characterizatid the subject, benchmarking, etc.),
» prediction (forecasting) of the energy consumptibthe subject.
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Within the individual buildings contributions, ardge part of the work is dedicated to the statistica
characterization of the subject. The subject digson through statistics is delineated with diffet

aims: Norway uses statistical analysis for the ftifieation of driving variables that contributed to
energy use, while the analysis from Austria andn@ey is particularly related to the topic of




determining an accurate profile of user behaviathbin offices and in residential buildings) to
represent the energy related behavior of the octap&ven if the characterization of the occupant
behavior assumed in the research takes differehspa highlights the increasing importance of the
topic.

The theme of prevision (forecasting) of the eneogysumption is carried forward by both the
Japanese and French groups in individual buildingsparticular, the main goal of the French
forecasting analysis is heating load as a funatiotihe outdoor temperature. In the Japanese dgsalys
of 6 detached houses, the focus was concentratéidegorediction of the energy supply and demand
in residential areas.

Finally there is a third case, where the firstistigial analysis used to characterize the subgefttriher
used to calibrate the model and forecast the mgldnergy performance. Italy focuses on the
determination of the total heat loss coefficientd ahe influence of solar and internal heat gains
through a statistical characterization of the bogd This is followed by calibration of the nuncai
model by comparing both expected energy need andetli measured consumption, and the expected
and real aggregated parameters resulting fromirsteahalysis.

Characterization of the sample is the most comnimnvéathin the analysis of a large building stock.
In particular, work groups (ltaly, Japan, Spain,n&@#a) focused the investigations on the
understanding of the influential factors which detme the energy consumption and establishing
reliable building energy demand models. Benchméokglectrical energy uses and for total primary
energy consumption for the whole building stock igoal present in some of the investigations like i
the Italian case utilizing 4000 bank branches.

Prediction is also dealt with in the large buildisgpck, in particular with the aim of establishing
building energy predictive models and goodnessitofof measurements assessment in the case of
Italian bank branches and Canadian investigatioresitlential buildings.

Due to the huge amount of data existing in a da&@b& a national and regional level, the main gbal
the investigations are to define building typolagie estimate energy demand of a building stock and

to estimate the amount of energy used for diffeesrut uses.

Table 5-2: Distribution by goal of the analysistlé obtained contributions

Partner Description Prediction
Individual Building Large building stock Individual Building Large building stock
TU Wien Energy-related user
(Austria) behavior
Concordia To establish reliable
University building energy demand
(Canada) predictive models
CETHIL, INSA To estimate the HVAC
de Lyon energy consumption
(France)
Karlsruhe Energy-related user
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Institute of behavior
Technology
(Germany)
Polytechnic of Identification of the Identification of To estimate the building| To establish reliable
Turin (Italy) influence of solar and| energy consumption energy performance | building energy demand
internal heat gains influential factors predictive models
Tohoku Identification of To predict the peak
University energy consumption energy consumption
(Japan) influential factors
Tohoku Identification of
University energy consumption
(China houses) influential factors
NTNU Identification of
Trondheim energy consumption
(Norway) influential factors
CIMNE (Spain) To analyze three
parameters taken as
building performance
indicators
National or regional level
Tsinghua To study statistical distribution characteristiés 0
University office building energy use in China
(China)
LBNL (U.S.)) to estimate the amount of energy used for
different end uses
Polytechnic of| to estimate energy demand of a building stock

Turin (ltaly)

The topic concerning the structure of the datalesdsolutely not trivial and very often it is face
with little rigor even though it is a crucial issue this section, the contributions of the pargnare

analyzed according to the level of database theg ballected.

The database structure referred firstly to theidefaime disaggregation of the energy consumption
and of the time dependent influencing factors:

» Level 1 — Annual energy consumption,
* Level 2 — Monthly energy consumption,
* Level 3 — Daily/hourly energy consumption.

The acceptable minimum level depends on the gahbarthe subject of the analysis, but typically:

» For analyses on large building stocks, level 1 acseptable for the investigations,
* For analyses on individual buildings, level 2 issidered as the minimum level.
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When the study focuses on very large building stpakseful analyses can be performed even if little
information for each single building is availabEngual energy consumption and some influencing
parameters) but for a wide number of buildings; witge study focuses on individual buildings, the
amount of required information increases, at lbastuse the data about energy consumption (and the
corresponding influencing factors) have to be otdd at a monthly level.

In particular, in cases where the main aim of theestigations is related to the building occupathis,
database contains:

» Building geometries and qualities,
* Climate (indoor and outdoor) information,
* Occupancies and lifestyles.

Such database characteristics are summarized le Bebfor the provided contributions.

Table 5-3: Distribution by database level of theéanied contributions

Partner

Residential

Office

Individual Building

Large building stock

Individual Building

Large building stock

TU Wien
(Austria)

Level 3

Level 3

Concordia
University
(Canada)

Level 3

CETHIL, INSA
de Lyon
(France)

Level 3

Karlsruhe

Institute of
Technology
(Germany)

Level 3

Polytechnic of
Turin (Italy)

Level 3

Level 1

Tohoku
University
(Japan)

Level 3

Level 1

Tohoku
University
(China)

Level 1

NTNU
Trondheim
(Norway)

CIMNE (Spain)

National or regional level

Tsinghua

University

Level 1
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(China)

LBNL (U.S.) Level 1

Polytechnic of
Turin (Italy)

Level 1

The analysis methods adopted in the contributioegedds on the goal and the subject of the
investigations. Generally, the description of $hbject is dealt with using regression techniques.

In the contributions on individual buildings, difémt types of regression analysis (linear, multatat
logistic, partial least square) are used. Norwagdugartial least square regression to establish the
variables with the greatest effect on energy udauitdings. The Austrian and German investigations
applied multivariate and logistic regression typésnalysis to identify a series of user profil€he
Italian investigation with linear regression an@ tArench regression analysis based on a quartile —
guartile plot are aimed at determining correlatidmetween heating energy need and external
temperature.

Within a large building stock, the identificatiof possible influential factors on energy consumptio
is mainly dealt with using regression techniquesaqification method 1 is also used to analyze
qualitative factors by Japanese investigationsotii besidential and office buildings.

Table 5-4. Analysis methods used in the contrimstiimr description of the subject

Partner Residential Office
TU Wien . ) . .
) Regression analysis Regression analysis

(Austria)
Karlsruhe o ) o . .

) Multivariate linear and logistic regression analysi
Institute of o ) )

Model optimization through AIC and Graphical analysis
technology
Nagelkerke’s R

(Germany)

Polytechnic of . )
Linear regression

Turin (ltaly)

Tohoku University

Quantification method 1 Multiple regression
(Japan)

Tohoku University

. Quantification method 1
(China houses)

NTNU Trondheim . )
Partial least squares regression

(Norway)
CIMNE (Spain) Linear regression
National or regional level
Tsinghua N
. ] Frequency distribution
University .
] Cluster analysis
(China)
LBNL (U.S)) Regressions techniques
Polytechnic of . . . .
) Hierarchical clustering techniques
Turin (Italy)
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Prediction methods within the provided contribui@re dealt with using multiple regression analysis
and cluster analysis, tree structure, associatite» mining and neural networks. Multiple regression
analysis was chosen to identify a mathematical madde to forecast energy consumption in
buildings with a set of already-known individuariadles by using linear functions, while the method
of neural networks (a basic data mining techniggelsed to analyze the non-linear relationship
between energy consumption and individual variab[@scision tree structure is a data mining
technique using both numerical and categoricalabées with interpretable flow-chart tree structures
that enables users to quickly extract useful inftion.

Table 5-5: Analysis methods used in the contrimgtimr prediction

Partner Residential Office Other
CETHIL, INSA . .
Regression based on quatrtile -
de Lyon .
quartile plot

(France)
Concordia Tree method technique
University Cluster analysis

(Canada) Association rules

Multiple linear regression
t-test
Polytechnic of F-test
Turin (Italy) Chi-squared test
VIF
Neural network
Tohoku ) . .
) ) Multiple regression analysis
University
Neural network
(Japan)

According to the goal of Annex 53 “Total energy uséuildings: analysis and evaluation methods”,
the contributions that took into account the tatakergy use in buildings are highlighted in the
following table.

Table 5-6: Contributions taking into account théataenergy use in buildings
Partner Total | Heating | Cooling | DHW | Electricity | Lighting Other

Concordia

University X
(Canada)
CETHIL, INSA de
Lyon (France)
Polytechnic of
Turin (Italy)
Tohoku
University
(Japan)

a)* X X X X
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b)** X

C)*** X

d)rrrx X X X X X X

Tohoku
University (China X X
houses)
NTNU Trondheim
(Norway)

Polytechnic of
Turin (Italy) -
regional

X (oil fuel
LBNL (U.S.) - (cil fuel,

national

X X X X X X Natural
gas)
a)* houses in Sendai b)** peak electricity in &athed houses c)*** office buildings d)**** 80
households
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5.2 Individual buildings

Focusing on single buildings, statistical methods be used for different purposes dealing with the
total energy use. In the following figure (Figure bthe different stages are presented till a e
model for the total energy use is well defined amatidated. For the description of the influencing
factors, the analyses of the relevant influencexgdrs, the parameter identification for the prealc
model and the estimation of the accuracy of thdiptien statistical methods can be used.

| DATABASE on 6 factors & total energy use |

Level 1 of analysis:

@ Statistical analysis for description DESCRIPTION

{Frequency distributions, benchmark...)

A

Level 2 of analysis:
INFLUENCING
FACTORS

Selection of the relevant influencing
factors

\
N

Selection of model-type for
energy use prediction

Level 3 of analysis:
PREDICTION

Parameters identification of the
prediction model

|

Estimation of accuracy of prediction

©@ O OO0

@ Prediction model ready for use

Figure 5-1: Stages of development a model for jpterh the total energy use in buildings

STAGE 1: DESCRIPTION

For description of the climate, the building, thEemtion and maintenance and the occupants tyypicall
descriptive statistics (Average Values, Standaxdatiens, Distributions) are used.
Some example parameters for each category ard hsiew.

e CLIMATE: Distribution of Hourly Mean Outdoor Tempaure in January,

* BUILDING: Distribution of Thermal conductivity adn insulation material,

* BUILDING: Average living space area per person,

« OPERATION: Average value and standard deviatiomdbor temperature in sleeping rooms,
 MAINTENANCE: Distribution of lifetime of a lightincoulb,

MAINTENANCE: Average lifetime of a glazing system,

« OCCUPANTS: Average value and standard deviatiomfoupation during a weekday,

«  OCCUPANTS: Average opening time of windows.
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Also, the energy use can be investigated with gesece statistics. In Experience 1, Yoshino et al.
analyzed the energy consumption in 6 detached Bomseof a field survey of 80 houses. The next
figure presents the frequency distributions of pézdd electricity for different time spans as a
histogram and as a cumulative distribution.
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Figure 5-2: Frequency distribution of peak valueaofear (TOHOKU 07) [Experience 1].

A very interesting application of statistical medlsois to find correlations between energy
consumption and parameters describing the objecthe next figure from Experience 7, an example
from Austria is presented where the consumptiohatfand cold water and electricity for household
equipment is correlated with the number of persorise household.
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Figure 5-3: Analyses of measured consumption af wa@lter/hot water and electricity for household
equipment in a multifamily building in Vienna (YedmMeasurement and Questionnaire: 2011,
Number of Household 44) [Experience 7]

STAGE2: SELECTION OF RELEVANT FACTORS

In stage 2 of the development of prediction modi@ssingle buildings statistical methods are used t
identify the important parameters. In Experiencthg,data of a Building Energy Management System
from a real office building is analyzed with a nindiriable regression method looking for the
important parameters that govern the heating enasgy the electricity consumption and the fan
energy use. In that experience a partial leastrsguaegression (PLSR) and principal components
regression (PCR) are used to model a responseblasiden there are a large number of predictor
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variables, and those predictors are highly comdlair even collinear. Both methods construct new
predictor variables, known as principal compong®€s), as linear combinations of the original
predictor variables. In the following figure theportance of an original variable is presented liar t
four most important PCs by showing the PLS weights.

PLS Weights for Heating Energy Use
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Figure 5-4: PLS weights for heating use of the fimast important principal components [Experience
2]

By using procedures for model scaling and findimiyidg variables based on PLS weights, it was
found that the most important variables for thetingaenergy use are outdoor temperature, control
parameters and temperatures in the substations@né of ventilation parameters. These ventilation
parameters were related to the AHUs that were mostise.

More focused on occupant behavior modeling, in Erpee 3 a regression analysis was chosen in
order to analyze the influence of physical andviltilial factors on the frequency of AC-unit usage fo
cooling and heating as well as the chosen set-peimperature. The importance of one factor
compared to the others has been calculated agdhegt of the absolute value of the coefficiene(th
respective value of ) and the range of the vagiakiis product was called the “importance value”.

In Experience 4 the main focus was to identify gpeelated user behavior patterns for window
control and the usage of sun protection deviceseiation to outdoor in indoor climate. Logistic
regression has been applied as the methodologipabach to explore patterns of user behavior. The
method allows predicting the outcome of a binargahelent variable by modeling the probability of
an event such as window-opening (‘yes’ or ‘no’).

STAGE 3 — SELECTION OF MODELING TYPE FOR ENERGY USREDICTION

In Experience 5 several classical methods to preédécenergy consumption of a real office building
in Rome, Italy are compared to the modeling methsitig Artificial Neural Networks Ensembling
(ANNE). The results show that the proposed ANNErapph provides a remarkable improvement
with respect to the best classical method (usiegatrerage load profiles).

STAGE 4&5: IDENTIFICATION OF PARAMETERS AND ANALYZNG THE PREDICTION
ACCURACY
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In Experience 8 based on a probabilistic occupadehthe heating energy demand of a single family
building with three different types of building eslepes has been calculated with a detailed building
simulation. From this database of 1000 ‘“virtual fiéas”, in three types of buildings the most
important occupant related parameters (averageomdemperature, average internal loads and
average outdoor air exchange) have been identifiedhinimization of the difference between the
average of the ensemble and the simplified calicmatith the average values. The parameters have
been identified using 2 of the three types of bodd and the accuracy has been analyzed using the
third type of building.

0E 8L aLE
Stochastic Simulation Average Values

100

30

60

60

Frequency Distribution
(=]
(=]

40 40

Heating Energy Demand (Eb)

20

/| 7
0 10 20 30 40 50 60 70 80 90 100110120130 140 150 160 170 180 190 200
Heating Energy Demand (Eb) [KWh/iy*a] 0

E L LE
Figure 5-5: Frequency distribution of heating engrgse calculated with a full building simulation
and an probabilistic occupant model (left) withete different building envelopes(E=EXxisting
building from 1970, L=Low energy house, LE=Lowe®trgy house). Analyzing the accuracy of the
simplified model using the parameters identifiethwhe buildings E and LE. The comparison of the
case with Low energy house shows the accuracyeahtitel. [Experience 8]
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5.3 Large Building Stock

Statistical analysis of a large stock of buildingpresent methods used to estimate the energy
consumption and/or the peak demand of a building bitvel of detail that is suited to apply to a
number of buildings that is statistically signifitgusually more than tens of buildings). The pipie

of the approach is to project the experimental @ata basis. The methods depend on the type of
basis which is typically defined by its dimensiordats components.

One type of projection is on categories (Experiente2, 3, 4, 5, 6). For example, Hu and Yoshino
(Experience 4) consider the climate zones, the afr¢iae building, the type of the heating systerd an
its operation, as well as the number of peoplehetiousehold and their annual income. In another
study, Yoshino (Experience 5) considers, besides ditegories mentioned before, the weather,
indicated by the cooling and heating degree dagsthe indoor temperature during the heating and
the cooling season. The resulting models are rsgmesmodels using different variants: multi
regression, neural networks, and quantificationho@s$ (Experiences 1, 2, 5).

Categorizing reduces the variance of the predictsdlts. The physical explanation of the result is
embedded in the categories. Usually, these appesadb not differentiate between the inputs (e.g.
weather), the parameters (e.g. floor area, totat hess coefficient) and the outputs (e.g. inddor a

temperature) of a physical (or direct) model. Tésuits indicate the influence of each categoryrgive

by the weighting coefficient in the model.

This kind of approach, which uses less data (ihtfee data available), is very effective in praetitt
allows the prediction of energy consumption with expected variance for real buildings by using
data which are available mainly on monthly andforl bills.

Comparison between categories needs a criteriochwiriormalizes” the consumption in order to
negate the effect of parameters specific to a gbhuglding. For example, Corgnati et al. (Experienc
6) propose and demonstrate the application of dicator that normalizes the data as a functiomef t
heated volume and the climate, described by theededpys of the site.

The second class of projection is on parametephg$ical models. The main idea in this approach is
to consider a physical model based on the heahbaland to identify the parameters of this model
which increase the fit between the predicted resaid the measurements. One of the most common
approaches is to use the load curve, which expeidse dependence of the heating (or cooling)
consumption on the outdoor temperature. This “tlaérsignature” of the building can be used
together with the distribution of degree-days ogrde-hours in order to estimate the energy
consumption (e.g. the bin method). Basically, thi#ding signature is obtained by regression. Robust
regression may be used to improve the predictionase of perturbation such as the usage of the
building (Experience 7). The advantage of thisrapph is that the thermal behavior of the building,
the comfort and the climate are decoupled. A var@ainthis method is to use the free-running
temperature, which allows the estimation of thergyneavings for cooling by using free-cooling by
ventilation (Experience 8).
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Refinements of the thermal signature or the load/ecumethod are proposed (Experiences 8, 9).
Ghiaus (Experience 8) demonstrated the equivaléeteeen the load curve and the free running
temperature. By using the free-running temperatire , whole range of building operation (heating,
ventilation and cooling) is described by a singlaaept.

Normally, thermal signature is a static method. ldoeer, the heat balance may be written taking in
account the accumulation. By doing so, Danov etEatperience 7) obtained a dynamic model which
can estimate the influence of the thermal mask@building on the energy consumption. Solar gains
may be also included in the thermal signature, ciedu the variance of the energy estimation

(Experience 7).
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54 National/Regional analyses

Statistical analysis of national building energysomption is aimed at defining a general overviéw o
the energy end use due to the construction seatos, national level. Actually, the knowledge of
national building energy use has remained undezsiiyation, due to a lack of information regarding
the overall characteristics. With the aim of builglistrong national databases, national agencies and
institutions (CBECS in the U.S., MOHURD in Chin@ABULA in Europe) have gathered real energy
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use data and physical characteristics on the ratlouilding stock. Specifically, China has collatte
data of government office buildings and large-stalemmercial buildings [Experience 1], the U.S.
has built a national sample database of commelcidgdings [Experience 2], whereas the European
countries have collected data characterizing thieme residential building stock [Experience 4].

The subject of the task is to collect and subsetijuemelaborate data characterizing national bogd
stocks in order to offer a realistic interpretatiohtypical building energy consumption. Different
approaches have been tested and used for stdtstedgsis of the databases.

Wei, Xiao and Jiang [Experience 1] adopted twoistiadl research methods: boxplot and a key
statistical parameter of energy use data and frexyudistribution analysis. Both these two approache
have been presented as effective and suitable uiiref analysis and international comparison.
Database characteristics have been gathered basedgmnal government website releases and
included Gross Floor Area (GFA) as well as anndattdcity consumption (excluding district
heating) of 4600 office buildings. Cluster analysisowed that the average national stock electric
consumption is 107 kWhe/m2a for private office dimgs and 67.6 kWhe/m2a for government office
buildings.

Hong and Wang [Experience 2] analyzed utility b{ilsonthly energy use for electricity and natural
gas) of the CBECS U.S. sample survey and broke tthewn into energy end use for the national
commercial building stock. Statistical regressiang engineering modeling approaches were used to
estimate national end use based on consumption. datarage energy consumption for the
commercial buildings in the U.S. - taken from mdyttegression models of 1518 gathered buildings -
is 292.6 kWh/m2, where the single largest part3%g.is due to space heating.

The European project TABULA (Typology Approach fBuilding Stock Energy Assessment) [51]
presented by Tala et al. [Experience 4] aimed ®ater a homogeneous database for European
residential building typologies. The research wkdteee statistical methods with the final goal of
estimating the energy consumption of residentidtding stocks to subsequently predict the impact of
potential energy efficiency measures of benchmaokigts at the national level (based on a singular
evaluation for each European country participating project). These methodologies shoot for the
enhancement of the potential impact of energy spwreasures and carbon dioxide reduction, by
means of the selection of the most adequate emetgyfitting strategies and interventions in exigti
buildings [Experiences 3,4]. Model calculations aitmat estimating the energy saving potential of
national residential building stocks using the EyeBalance Method were developed by four
countries (Denmark, Germany, Italy and Czech Répubikpresentative of the main European
climatic regions. This was accomplished usingrthiional EPBD asset rating method [Experience 3].
Moreover, the same modeling method (EBM) can pdsdib extended to the energy performance
assessment of the whole national building stock.

For each country, two levels of building retrofiere considered: (a) standard refurbishment, apgplyin
standard national measures and (b) advanced rsffumieint, applying the best national technologies
available [Experience 3]. Specifically, the Italidatabase contained records for more than 66.000
houses rated across the Piedmont region and alsergd information on physical characteristics and
calculated energy requirements of single houses.tl@n basis of three independent variables
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elaborated by means of statistical analysis (looatage, form of the building), a total of 84 biriigl
types (archetypes) representative of the Italismesntial building stock were generated [Experience
4].

All these kind of approaches, which use statis@eellysis of national building stock samples, ag/v
effective. As a matter of fact, average predictiofienergy consumption at the national level are
available. Public existing building energy use Rxssted for a long time at a micro-perspective
[Experience 2] due to a lack of shared definiticnsd outdated information [Experience 3].
Nonetheless the development and the statisticdysinaof strong national energy-use datasets, could
be one element towards a more robust estimatidheobverall energy consumption of the national
building stocks.
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6. General conclusion and perspective

In this report, the assessment of potential apiidinaof statistical analysis for the predictionatiot
energy use in buildings and for the identificatafnthe related most significant influencing fact@@s
dealt with. This has been covered first by an edeenliterature review, followed by the collectiomda
critical analysis of experiences carried out byGWworking group.

First, it emerged one of the key passage whersstati based tools are used for the analysis is to
clearly define to subject of the study. As mentahnie possible applications of statistical analysi
may be divided into two big fields: to analyze widual buildings, or to focus the analysis on large
building stock up to national or regional analysis.

The collection of the Annex 53 partners’ experiencghowed different types of information, very
detailed up to the breakdown of each single fimargy use. On the contrary, in the case of regional
or national analysis, few information about eaciiding of the sample are needed to provide some
basic but interesting statistical analysis. Startiom these considerations, it arises that tocsele
suitable methodology, the “scale” of the analysigssential. To this aim, three main descriptove ha
to be considered: number of buildings to be anayf®m an individual to very large building stogks
number of items describing each buildings and timeguency of the collected time dependent
parameters (annual to sub-hourly time frequency).

The possible application of statistical analysipat&ls on the aim of the analysis itself. Statistamsd

be used to describe the object of the study (deseezi statistics) to provide a clear descriptiortto#
actual energy consumption; then to find out whicd the dominant influencing factors, to put in
relation the dependent variable (energy use) atepiendent variables (the influencing factors). When
the most important influencing factors are knowatistical analysis could be used to build up a
prediction model. Statistics can also be appliedcieating reference buildings representative of a
building stock, that can be implemented in diragtding energy simulation tools.

Another possible application of statistics is tdir® “modules” meaning to provide statistical input
for a direct building energy simulation tool. Fotaenple, dealing with occupant behavior, the action
on adjusting the thermostat, it's something thadisdeterministic, but it's related to the probiapiof
doing a certain action when some environmental maters are present. So the input data
(probability) for direct simulation tool could befihed through a statistical approach.

According to this general scheme, the applicatibrstatistical analysis can be structured in three
levels of investigations.

The first level is a basic level: since an amourdaia is available first of all tendencies relatedhe
dataset should be clarified. The use of statisfigahmeters (mean value, standard deviationof..),
frequency distributions of the collected data, etm provide significant information to define aan
picture of the subject of the study. It's the ugstatistics to describe.

The second level is to use statistics to find betdominant influencing factors on energy usethéf
most dominant influencing factors can be identifieduced to a limited number of parameters, it's
possible to find out the relationship between thEm@meters and the final energy use and thenya ver
quick and robust prediction model could be builptovide information about the energy behavior of
the building (level three).

The adopted analysis methods in the contributi@medd on the goal and the subject of investigations
In the contributions on individual buildings, difémt types of regression analysis (linear, multatat
logistic, partial least square) are used. Gengrdie description of the subject is dealt withresgion
techniques. Within large building stock arrived esipnces, the identification of possible influehtia
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factors on energy consumption is mainly dealt wégression techniques. Quantification method is
also used to analyze qualitative factors.

Prediction methods (within the arrived contribuspmare dealt with both multiple regression analysis
and cluster analysis, tree structure, associatitmmining and neural network.

Multiple regression analysis was chosen to idergifynathematical model able to forecast energy
consumption in buildings with a set of already-kmowwdividual variables by using linear functions,
while the method of neural network (a basic dataimgi technique) is used to analyze the non-linear
relationship between energy consumption and indalidvariables. Decision tree structure is a data
mining techniques using both numerical and categbwariables with interpretable flow-chart tree
structures that enables users to quickly extrasfulignformation.

As well known, a significant problem to face is thiéference between the predicted building energy
demand and its actual energy consumption. A bigatchmn this difference is due to the lack of
knowledge about the real functioning of the buigdafuring its day by day life. A fundamental aspect
for a better description of the building real fuoning is to investigate, to highlight and to exgze
those factors related to the actual functioningnémn53 “Total Energy Use in Buildings -Analysis and
evaluation methods” had as its ultimate outconteetier understanding and a strengthening of the
knowledge for robust prediction of total energygesan buildings, hence enabling the assessment of
energy-saving measures, policies and techniqueshi®iase, Annex 53 focused on the influence of
occupant behavior on building energy consumptidth) the purpose to bring the occupants behaviors
into the building energy field so as to conduct blvdding energy works (research, practice, policy,
etc) more closed with the real world.

Annex 53 clearly defined the approach to describeupant behavior quantitatively in the field of
building energy performance, by setting up probstil models for predicting occupant behavior in
dwellings and office buildings. A further perspeetiof the statistical analysis is represented by ne
methodologies (modeling approaches) and techni¢mesitoring hardware and software platforms)
for analyzing real building total energy use and ifovestigating the factors influencing occupant
behavior in buildings, are therefore availableffother investigations and for specific applicaicas

in energy auditing and smart metering of HVAC syste Combinations of deterministic and
probabilistic behavioral models can define all fhassible interactions between users and building
controls (such as occupancy presence, heating @thg set point adjustments, use of lighting and
equipment) and they can be implemented simultatgadnsbuilding models in energy simulation
tools, in order to obtain a complete evaluatiorusérs’ influence in modifying the building energy
performance. Such models should also help in iflémg wastes in environmental control, as, for
example, excessive air renovation, too accuratedityntontrol, etc.
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V-2

Statistical analysis models and applications
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1. Statistical analysis of individual buildings

1.1 Introduction

Focusing on single buildings statistical methods ba used for different purposes dealing with the
total energy use. In the following figure the diffat stages are presented till a prediction moaiel f
the total energy use is well defined and validateat. the description of the influencing factorsg th
analyses of the relevant influencing factors, theameter identification for the prediction modetlan
the estimation of the accuracy of the predictiatistical methods can be used.

| DATABASE on 6 factors & total energy use |

Level 1 of analysis:

@ Statistical analysis for description DESCRIPTION

{Frequency distributions, benchmark...)

v

Level 2 of analysis:
INFLUENCING
FACTORS

Selection of the relevant influencing
factors

\
N

Selection of model-type for
energy use prediction

Level 3 of analysis:
PREDICTION

Parameters identification of the
prediction model

!

Estimation of accuracy of prediction

G © OO

@ Prediction model ready for use

Figure 2-1: “Stages of development a model for o the total energy use in buildings”

STAGE1: DESCRIPTION

For description of the climate, the building, thEemtion and maintenance and the occupants tyypicall
descriptive statistics (Average Values, Standakdadiens, Distributions) is used.

Examples are:

CLIMATE: Distribution of Hourly Mean Outdoor Tempegure in January

BUILDING: Distribution of Thermal conductivity ofrainsulation material

BUILDING: Average living space area per person

OPERATION: Average value and standard deviatiomdbor temperature in sleeping rooms
MAINTENANCE: Distribution of lifetime of a lightingoulb

MAINTENANCE: Average lifetime of a glazing system

OCCUPANTS: Average value and standard deviatiomémupation during a weekday
OCCUPANTS: Average opening time of windows
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Also the energy use can be investigated with detes statistics. In ExperiencelYoshino et. al.
analyzed the energy consumption in 6 detached Bouseof a field survey in 80 houses. The next
figure presents the frequency distributions of pézdd electricity for different time spans as a
histogram and as a cumulative distribution
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Figure 2-2: “Frequency distribution of peak valuéayear (TOHOKU 07) [Experience 1].”

A very interesting application of statistical medlsois to find correlations between energy
consumption and parameters describing the objetthe next figure from Experience 7 an example
from Austria is presented, where the consumptiohatfand cold water and electricity for household
equipment is correlated with the number of persorise household.

Houshold Electricity in KWhyear
er in m¥/Person year Hot Water in {/Person day

]

] ——— . . - +-}

3500

- 2.1

Mumber of persons in the household

Figure 2-3: “Analyses of measured consumption ¢d @eater/hot water and electricity for household
equipment in a Multifamily building in Vienna (YesfrMeasurement and Questionnaire: 2011,
Number of Household 44) [Experience 7]”

STAGEZ2: SELECTION OF RELEVANT FACTORS

In stage 2 of the development of prediction mod@ssingle buildings statistical methods are used t

identify the important parameters. In Experiencah2 data of a Building Energy Management

Systems of a real office building is analyzed vatimultivariable regression method looking for the

important parameters that govern the heating enasgy the electricity consumption and the fan
energy use. In that experience a partial leastrsguaegression (PLSR) and principal components
regression (PCR) are used to model a responsebieamdien there are a large number of predictor
variables, and those predictors are highly corelair even collinear. Both methods construct new
predictor variables, known as principal compongf€s), as linear combinations of the original
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predictor variables. In the following figure theportance of an original variable is presented liar t
four most important PCs by showing the PLS weights.

PLS Weights for Heating Energy Use

Tout
00 = 320.5B40
W 320.RT40
£ 0-03 m 320.04.RT40
2 0.01 5 ®320.04.RT50
g 0.01 pC1 - L B W 320.02.RT40
= 36.03.LK
-0.03 — ®36.04.1K
= 36.06.1K
o PCs 36.07.LV

Figure 2-4: “PLS weights for heating use of therfouwost important principal components
[Experience 2]”

By using procedures based on PLS weights for medaling and finding driving variables, it was
found that the most important variables of the ingaenergy use are outdoor temperature, control
parameters and temperatures in the substations@né of ventilation parameters. These ventilation
parameters were related to the AHUs that were mostise.

More focused on Occupant behavior modelling in epee 3 a regression analyses was chosen in
order to analyze the influence of physical andviitilial factors on the frequency of AC-unit usage fo
cooling and heating as well as the chosen set-peimiperature. The importance of one factor
compared to the others has been calculated agddeqgt of the absolute value of the coefficiene(th
respective value of 3) and the range of the vagialhis product was called the “importance value”.

In experience 4 the main focus was to identify gpaelated user behavior patterns for window
control and the usage of sun protection deviceselation to outdoor in indoor climate. As a
methodological approach to explore patterns of bebavior logistic regression has been applied. The
method allows predicting the outcome of a binargeathelent variable by modeling the probability of
an event such as window-opening (‘yes’ or ‘no’).

STAGE 3 — SELECTION OF MODELING TYPE FOR ENERGY USREDICTION

In Experience 5 several classical methods to preké&energy consumption of a real office building
in Rome, Italy are compared to the modeling metasithg Artificial Neural Networks Ensembling
(ANNE). The results show that the proposed ANNErapph can get a remarkable improvement with
respect to the best classical method (using theagedoad profiles).

STAGE 4&5: IDENTIFICATION OF PARAMETERS AND ANALYZNG THE PREDICTION
ACCURACY

In Experience 8 based on a probabilistic occupardehthe heating energy demand of single family
buildings with three different types of building vehopes have been calculated with a detailed
building simulation. From this database of 1000ttwal families” in three types of buildings the sho
important occupant related parameters (Average andemperature, average internal loads and
average outdoor air exchange) have been identfigdninimization the difference between the
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average of the ensemble and the simplified calicmatith the average values. The parameters have
been identified using 2 of the three types of bodd and the accuracy has been analyzed using the
third type of building.
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Figure 2-5: “Frequency distribution of heating emgruse calculated with a full building simulation
and an probabilistic occupant model (left) witheté different building envelopes(E=EXxisting
building from 1970, L=Low energy house, LE=Loweastrgy house). Analyzing the accuracy of the
simplified model using the parameters identifiethwie buildings E and LE. The comparison of the
case with Low energy house shows the accuracyeahtdel. [Experience8]”
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1.2 Experience 1: Survey of the peak electricity in radential buildings (analysis based on
survey of energy consumption for 80 houses in Japan

(Hiroshi Yoshino, Ayako Miura)

1.2.1 Introduction

The annual peak electricity consumption in Japas lbeen increasing due to the changes in the
energy demand structure. Although a peak demakddw/n to occur on the hottest day of the year,
the biggest consumption has a tendency of readfigiger prominence value. As the annual electricity
supply is determined on the basis of last yeartisuahpeak electricity demand, the boost of peak
electricity is a huge problem. Consequently, theoaning down the peak electricity load is a
principal goal from the viewpoint of maintaining séable electricity supply, lowering costs and
conserving environment. Despite the fact that pmakothing has occurred in the residential sector
(e.g. use of night time power for thermal storageicks), the biggest demand of the day in residenti
sector occurs from 8:00pm to 10:00pm. It is impairt® grasp the peak energy consumption in order
to predict the energy supply and demand in theleesial sector. In this paper, frequency distriii
day-load-rate and outbreak time of peak electriaimalysis was carried out on 6 detached houses
based on field measurements of the energy consomfir 80 houses in Japan. This report was
authored corresponding to Ref [1].

1.2.2 Database characteristic

* Number of Buildings: 6 detached houses (distribinesix different districts)

* House type: Multi-family (minimum of 2 residentsrit@ximum of 6)

» Analysed period: January 2003 to December 2003u@dteld measurement was carried out
from November 2002 to March 2005)

* Contents: Energy data, temperature and humidity, dbtilding structure and kinds of
appliances

* Interval:

Electricity: every minute,

Kerosene: every five minutes,

Gas: every 15 minutes,

Temperature and Relative humidity: every 15 minbigsis

* Online database: Energy, temperature and humiditta davailable in database: Energy
Consumption in 80 Residential Buildings in Japan)

YV VYV

1.2.3 Method

In order to clarify the relationship between pebldceicity demand and residential appliances, &ed t
regional characteristics of peak electricity demasame analyses were conducted on factors which
may affect the residential peak energy demandirhgDf peak electricity occurrence, 2) Relationship
between appliance use and peak energy consumptiB)aRegional characteristics. As for the time
variation of the peak value, integrated value of mifiutes basis has been converted into hourly
consumption amounts (15 minutes X4), and the aeetamurly electricity consumption value is
indicated. The biggest electricity consumptiontwd tntegrated value per minute is given as the peak
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value of the day. Furthermore, peak electricity stomption occurrence time, frequency distribution
and the ratio of daily load factor were investigate

1.2.4 Results and discussion

Outline of the investigated houses

Table 2-1 shows basic information of the investigatouses. These 6 detached houses were extracted
from an analysis of field measurements on energywmption for 80 houses in Japan. Three houses
are all-electric houses and other 3 houses useinethienergy sources were selected, since they have
enough information and measurement data for thiysiea

Table 2-1: Basic information of investigated houses

Gross Leakage

Air—conditioning

Name of fAoor Q-value area Energy sourse by each use Numb Eaui
Category detached | Location |Built year Structure P P er of quipments
house area W/m-K] | [omi/ Heatin, Coolin G Cookin family | Heatin Coolin
[m] ml 3 3 supply g y g &
Panel
Hokkaido | o oro | 1999 |147.4| Wood 1.40 050 |Electricity | Electricity | Electricity | Electricity | 6 | Neter -
01 with Hot
All—electric water
Thermal
house Tohoku . - - - ..
07 Morioka 2000 140.0 Wood 1.01 0.70 |Electricity | Electricity | Electricity | Electricity 4 strage A/C
heater
ety Maebara 2001 145.7 Wood 25 3.00 |Electricity | Electricity | Electricity | Electricity 4 . A/C, A/C
06 oil heater
Hokkaido - . Fan
07 Sapporo 1999 240.0 | RC+Wood 1.44 0,79 Kerosene | Electricity | Kerosene | Electricity 4 heat -
Combined :j(fr
—— Hokuriku f \ioota | 2002 [117.0] Wood 218 | 095 |Electricity |Electricity| Gas Gas 4 | Elctric | A/C
sourse 03
q carpet
housing K o
V“(‘)’: Fukuoka | 2001 |158.9| Wood 23 400 |Electricity |Electricity|  Gas Gas 2 A/C A/C

Investigation of peak electricity consumption varidgion and the occurrence time in winter

a) All-electric house

Figure 2-6 shows the time variation of electrictgnsumption and time of the peak occurs in
Hokkaido 01, which is located in one of the coldestt of Japan. Space heating is used all day other
than 4:00pm to 6:00pm. Energy consumption is nettihigh from 11:30pm to 5:00pm, when a hot
water supplier is put into action. Start-up eleityi of the hot water supplier causes the peakevéiu
frequently occur between 11:00 pm to 1:00am. Anofeak shown around 7:00am is caused by
reheating the hot water. Each peak value in Holkk@i stays constant around 12kW.
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The energy consumption characteristics of otheelalttric-house, Tohoku 07 are indicated in Figure
2-7. Tohoku 07 uses a thermal storage electricehélaat uses night time electricity. From 1:30am to
4:00am, about 20kW of peak electricity occurs duehe simultaneous operations of the hot water
supplier and thermal storage heater. Almost alhefpeak electricity consumption amounts are caused
by the use of the thermal storage heater. In otdeunderstand the peak energy consumption
excluding night time electricity, another analysias carried out on Tohoku 07.The result is shawn i
Figure 2-8. Peak values decline when cooking devace used both in daytime and night time. Peak
values are highest around 7:00 pm and the valdé\Wg. Figure 2-9 indicates the peak electricity
consumption of each appliance used and the pegenised by each appliance. Electric stove and
lighting consume more energy than other appliareeshe monthly average ratio indicates: 56.7% for
stove, 31.7% for lighting and others and then 4{@Ged’V.

The electricity consumption of Kyushu 09, whichlasated in the warmest region of the three all-
electric houses is shown in Figure 2-10. An airdstoner and oil heater are used as heating ressurc
The occurrence time of peak electricity is disttdzlwidely compared to other all- electric houses.
The peak value found at night occurs when the spaatng and hot water supplier are operated at the
same time. Other peak values are presented whielemés use cooking devices, with the peak values
distributed around 6 to 10kW.

In those three all-electric houses, thermal stordeeces such as hot water suppliers have a large
influence on the peak electricity consumption. @iséinguishing aspect of energy consumption in all-
electric-houses are that equalization of peak ®b#gt occurs due to the concentration of the peak
night time, while general households consume thigett amount of energy around 8:00pm to
10:00pm, when family members tend to spend timettogy. However, the investigation with the
exception of night time consumption shows thatghak occurred around 7:00pm because of electric
cooking devices.

b) Combined energy source houses

The electricity consumption of a detached housekiiolo 07, is shown in Figure 2-11. This house
uses kerosene for space heating and the hot waiplys Electricity is used for all other purposéke
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main appliance for heating is a kerosene fan heater an electric fan heater is operated when
required. In Hokuriku 03, there are three peaksiogrg in the morning, daytime and night as shown
in Figure 2-12, but the largest peak occurs aroufilam. Regarding the effect of microwave and TV
usage on producing the peak value, is shown inr€igel3. Several appliances have almost the same
ratio contrary to Tohoku 07 (all-electric house)vdfich peak by the electricity was accounted for
electricity cooking devices. Figure 2-14 shows dlaga for Kyushu 04. Gas is used for the hot water
supply and cooking, while electricity is used far eonditioning. The peak values have a wide
distribution widely and occur frequently around A@pm. In addition, there is another peak
occurrence around 7:00 when residents operateraromditioner. In houses which have a variety of
energy sources, the occurrence time of peak etggtdonsumption varies widely in one day, when
cooking devices and other appliances are operatedtaneously.
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Figure 2-11: “Time variation of electricity Figure 2-12: “Time variation of electricity
consumption and distribution of occurrence time oftonsumption and distribution of occurrence time of
peak electricity consumption except for night time peak electricity consumption except for night time
electricity (Hokkaido 07)” electricity (Hokuriku 03)”

Investigation on long-term fluctuation of peak eletricity

a) All-electric houses

Figure 2-13 shows the integrated electricity constionm in a day and the long term fluctuation in
Hokkaido 01. Since the house uses space heatirigeatiay, energy consumption in winter is  high
(10~12kW). As the season changes into summerpélaé& value of energy consumption gradually
goes down. The same data for Tohoku 07 is showsigare 2-14. The peak electricity consumption
in winter is remarkably high (peak of 20kW). Fromayto October, when energy consumption for
heating does not occur, peak electricity is arorkd/ which is the same as other houses. In Figure 2-
15 (Kyushu 06), the energy consumption for heatiages drastically in one day. Despite of cooling
energy consumption in summer, there was no effethe peak value.
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Figure 2-13: “Integrated electricity consumption én
day and long term fluctuation (Hokkaido 01) “
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Figure 2-14: “Integrated electricity consumption
in a day and long term fluctuation (Tohoku 07)”
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Figure 2-15: “Integrated electricity consumptiond@n Figure 2-16: “Integrated electricity consumption in

day and long term fluctuation (Kyushu 06)”

a day and long term fluctuation (Hokkaido 07) “

In all-electric houses, the peak energy consumpisowery sensitive to the season. The use of
electricity for heat may have a large effect orEdpecially in houses in colder parts of Japan) sisc
Hokkaido and Tohoku, where seasonal effects cldaalg to high heating energy consumption.

b) Combined energy source houses

Figure 2-16 indicates the integrated electricitpsiamption in a day and the long term fluctuation in
Hokkaido 07. Daily peak electricity consumption diuates within one day, and there was no
difference between each season. Figure 2-17 shiosvsldta for Hokuriku 03. The winter energy
consumption is relatively high, because this can alteibutable to using air conditioners and
electrically heated carpet for space heating. Jeggpeople often use electrically heated carpet as
partial heating, and occupants sit on it direcihespite peak electricity increasing in winter, dail
variation is larger than that of the seasonal diffiee. The data for Kyushu 04 is shown in Figufe32-
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Space heating is operated from December to Apfhiilenspace cooling is operated from August to
September. The peak value is around 3~4kW as spawditioning devices are used. In combined
energy source houses, the variation of peak et#gtdonsumption varies in a day is more significan
than the seasonal variation.
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Figure 2-17: “Integrated electricity consumption Figure 2-18: “Integrated electricity consumption
in a day and long term fluctuation (Hokuriku in a day and long term fluctuation (Kyushu 04)”
03)!7

Frequency distribution of peak electricity consumpion of a year
Frequency distribution of the effect of varying ttimae interval on peak electricity consumption in a
year was analyzed.

a) All-electric houses

Figure 2-19 indicates the frequency distributiorpefk electricity in Tohoku 07. As the time period
gets longer, the average value decreases anddtiuation are gets narrower. In addition, thera is
large difference between the most frequent valuk the average. This is simply because the peak
electricity consumption varies depending on thesgea
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Figure 2-19: “Frequency distribution of peak valoga year (Tohoku 07)”

b) Combined energy source houses
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Figure 2-20 indicates the result of Kyushu 04 wwhises electricity, gas and kerosene. Likewise, for
the all-electric houses, the distribution ranges gpatrrower as the time period increases.
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Figure 2-20: “Frequency distribution of peak valoga year (Kyushu 04) “

Long- term variation of daily load factor ratio
Daily load factor ratio means the ratio of the ager electricity consumption per day and the
maximum electric power. The formula for this congiign is indicated as:

Averuge eleclricily

Daily load factor ratio =

x 100 (1)

Maoximum electric power

No matter how small the peak electricity value oscuhe supply side is required to cover the
demanded electricity and provide a power generaaae to balance the request. As the peak value
increase in the residential sector, the more takdemand will differ from the supply.

a) All-electric houses

Figure 2-21 indicates the variation of day loaddacatio in all-electric houses. Day load factaries
depends on the season and it decreases 10% to 2@ aeason changes from winter to summer.
Especially in Hokkaido 01 and Kyushu 06, the diéfeze among each season is the biggest. The
largest differences between two seasons were 3&rkP41.1%, respectively. The lowest ratio of daily
load factor of 8.9% occurred on SeptembBirdHokkaido 01 and 8.7% on August & Kyushu 06.

In Tohoku 07, the value was below 23%, which iatireely small for a whole year.
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Figure 2-21: “Long- term variation of daily load ¢tor in all-electric houses”

b) Combined energy source houses
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Figure 2-22 indicates the variation of day loadtdacatio in combined energy source houses. In
Hokkaido 07, except for the New Year when residemés away from home and almost no energy
consumption was shown, a day load factor ratiorofiad 20% was indicated throughout a whole year.
In contrast, the ratio in Hokuriku 03 and Kyushuv@ies widely in a day with difference of 56% and
43.7%. The lowest ratio of daily load factor of @ dccurred on May 2bin Hokuriku 03 and 6.7%
on August ' in Kyushu 04.
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Figure 2-22: “Long- term variation of daily load étor in combined energy source houses”

1.25 Conclusion

(1) In all-electric-houses, the occurrence times ofkpekectricity in winter are concentrating at
midnight due to the operation of hot water suppdied thermal storage heater.

(2) In combined energy source houses, the peak eigcitnsumption are distributed widely day by
day while in all-electric houses it varies depegdon the season. Therefore, the performance
advantage of appliances is important in order tkarihe energy load flat.

(3) Use of electricity for heating has a great influeran increasing energy consumption. When
excluding night-time electricity consumption, pealectricity was found when occupant use
electric stove in all-electric house. Thereforestiategy for increasing the efficiency of electric
cooking devices is required in order to smoothgéak electricity consumption. For the long-term
variation of annual peak electricity frequency, rtheavas a seasonal difference in all-electric
houses especially in houses which use electricespaating. On the other hand, there was a huge
difference within one day in the combined energyrse houses.

(4) Frequency distribution of peak electricity consuimpta year is spread out in all-electric house
because of the seasonal difference of electrictysamption..

(5) Ratio of the daily load factor decreases as thesaea&hanges from winter to summer in all-
electric houses. In combined energy source houbagavariation was found in a day.

Reference:

[1] Hiroshi Yoshino, Shuzo Murakami, Shin-ichi Akabayia¥azuaki Bogaki, Toshihiko Tanaka,
Hirofumi Hayama, Akihito Ozaki, Hanako Sugawara:RBIEY OF THE PEAK ELECTRIC IN
RESIDENTIAL BUILDINGS : Analysis of the data fromusrey of energy consumption for 80
houses in Japan, AlJ. Journal of environmentalrereging(610), pp.99-106, 2006
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1.3 Experience2: Application of the prediction model fo building energy use assessment.
Analysis of BEMS database by using multivariable rgression analysis

1.3.1 Introduction

Principal component regression (PCR) and partadtlequares regression (PLSR) present application
of principal component analysis (PCA) in linear ralsd PCA can be used for different purposes.
Some of applications are establishing relationship®ng data in databases and fault detection and
diagnosis. Due to wide application of PCA, thergehheen developed software based on PCA (The
Unscrambler® X [1]) and specialized calculation Isovithin MATLAB. PCR and PLSR were
implemented to analyze building energy managemgstes (BEMS) data and to relate them to the
building energy use.

The idea was to encourage a smart use of BEMSfoiaemergy use analysis. Databases of 76 and 41
variables, which included occupancy level, consighals, and water and air temperatures, were used
to explain heating, electricity, and fan energy. 0&ariable contributions to the principal comporgent
(PCs) were used to simplify model and found thetrimaportant variables. This way, energy use was
defined indirectly by using available variablesBEMS. The approach was tested on a low energy
office building located in Trondheim, Norway. Theggested approach could be used by building
operators to identify opportunities for decreasémgrgy use and for energy use estimation when data
were lost due to data transmission problems.

In this study analyzed databases for predictionhefting energy use and electricity use were
developed with BEMS data. Even though BEMS datadifferent in nature, temperature, control
signals, pressures, etc., they can be correlatedefample in office buildings at the mid of day,
outdoor temperature is usually higher, equipmer@Ns occupancy level is higher in office building,
while during the night time situation is usuallypmsite. In addition, BEMS data are correlated neeti
Therefore, it could be useful to decouple data estdblish new variables that would be uncorrelated.
These new uncorrelated variables should be usédfioe building energy use. PCA may also be used
to analyze time series, if variables of time adduded as predictor variables.

1.3.2  Aim of the analysis

The aim of the study was to identify driving vafegthat contributed to energy use in low energy
office building by integrating BEMS and energy ulsda.

1.3.3 Database structure

Available data from BEMS were used as predictoialdes, while the heating energy use, the total

electricity use, and the electricity for fans weased as target variables. BEMS data that were fosed

the predictor variable databases are given in T2ile To effectively present variables, in Tabl@ 2-

variables for only the first air handling unit (AHB6.01 are presented, because variables for the

seven rest AHUs were the same except that thaiesakere different in operation depending on use.
Table 2-2: Database description predictor variables

Variable name Description Value range Application
Day Day of weel 1 for working, 2 for nonworkir H' EF
Hou Hour 0-1, H,EF
Toul Ouidoor temperatu -20-30°C H E.F
Tin_R403: Indoor temperature in the" floor office 18- 23°C H EF
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Tin_R401( Indoor temperature in the" floor office H E.F
Tin_R409¢ Indoor temperature in the" floor office H EF
OCC_R403 Occurancy level in the " floor office _ H .EF
- " - 0.5 (not occupied), 1 — 1.5 (bypass),, . =
OCC_R401 Occupancy level in the™ floor office 3 (occupied) H E,F
OCC_R409 Occupancy level in the" floor office H.E F
320.SB4! Valve position in the main anct 0-100 % H’
320.RT4( Supply temperature in the main bra 30-70°C H
320.RT5( Return temperature in the main bra 30-60°C H
320.02.RT4 Supply temperature in floor heat 20-35°C H
320.02.RT5 Return temperature in floor heat 20-30°C H’
320.03.SB4 Valve position for snow meltir 0-100% H"
320.03.RT4 Supply temperature for snow melt 20-35°C H
320.03.RT5 Return temperature for snow melt 15-25°C H
320.04.SB4 Valve position in the radiator brar 0-100% H
320.04.RT4 Supply temperature in the radiator brz 30-70°C H
320.04.RT5 Return temperature in the radiator bre 25-55°C H
36.01.LK Valve position at heating/cooling ¢ 0-100% H"
36.01.LV Valve position at heating ¢ 0-100% H
36.01.RTS! Return temp. after LV AH 20-50°C H
36.01.LX0! Input signal for recovery whe 0-100 % H .EF
36.01.JV4i Input signal for supply fe 0-100 % H.EF
36.01.JV5 Input signal for exhaust f. 0- 100 ¥ H' EF
36.01.RT4 Supply ir temperatur 16— 24°C H EF

H — heating energy use, E — electricity use, Fn-efactricity use

Monitoring of the energy use in the energy serdiatabase was on hourly basis. Therefore, data from
BEMS in Table 2-2 were calculated as hourly mednes The column “Application” in Table 2-2
shows for prediction of which energy use the vdeialwere used.

1.3.4 Relevant influencing factors

Much data can be measured via BEMS. In generahritbe assumed that all these data contribute to
some extent to the building energy use. If thererBEMS database is used in the PCR and PLSR to
establish the energy use model, then all the BEBI& dould be related to the building energy use.
However, the BEMS data can be correlated and thésita redundancy could appear. To extract the
most important data that contribute mostly to thdding energy use, it could be beneficial to scale
the models obtained by using PCR and PLSR. Mod#gingcfrom a model based on the database to a
model based on 10 variables was performed basetheompredictor variable contribution to PCs.
Model scaling in this way was used to identify drgyvariables.

1.3.5 Model type

Partial least squares regression (PLSR) and pahcpmponents regression (PCR) are both methods
to model a response variable when there are a tangder of predictor variables, and those predsctor
are highly correlated or even collinear. Both mdth@onstruct new predictor variables, known as
principal components (PCs), as linear combinatiminthe original predictor variables. Detail theory
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behind the application and use of the PCA is erpldiin [2]. Important relations for this analysis a
explained in [3].

To decrease number of variables and find the mdisteincing, the PLS weights and PC loadings were
used. The PLS weights are the linear combinatidribeooriginal variables that define the PCs in the
PLSR. Actually, they describe how strongly each ponent in the PLSR depends on the original
variables. Similarly, the PC loadings describe tstk@ngly each component in the PCR depends on
the original variables.

1.3.6 Results and discussion

Use of the entire databases to calculate targeéablas could be demanding and requires specific
computer programs to perform calculation. Smallatabase of predictor variables with several

variables could be very simple for practical usel @nesentation of influential parameters on the
building energy use. To introduce approach for el@sing number of variables gradually, method

effectiveness are presented first. Method effen#gs was estimated by using model accuracy.
Accuracies for the heating energy use model fon begression methods and different amount of data
are presented in Figure 2-23. In Figure 2-23, amurs presented by coefficient of variation of the

root mean squared error (CV(RMSE)), which was esi#th by using 10-fold cross validation.

RMSE for Heating Energy Use
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Figure 2-23: Accuracy of the heating energy use ehfat different amount of data and different
methods

In Figure 2-23, the model accuracies are presemgeftinction of number of used PCs to model the
target variable. Models are declared to be caldoraft they produce CV(RMSE) within £30% when
using hourly data [4]. This means that the modelgetbped by using the entire database in Figure 2-1
have acceptable accuracy when four PCs were udeite the models described with 10 variables
produced acceptable accuracy already with two RCBigure 2-23, it is also possible to notice that
the 10 variable models had faster improvement thenmodels based on the database. This faster
improvement of the simpler models indicated thagrehwere redundancy and mutual correlation
among variables in the database. In Figure 2-2éyvdomparing the regression methods, it is possible
to notice that PLS regression has faster improvenam PCR, either by using the entire database or
10 variables. This result was expected, sincearPthS regression method PCs are obtained to directl
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reflect the relationship between the predictor trelresponse [2]. In PCR method, the PCs explain
only variation in the predictor variables, with regard to the target variables.

In Figure 2-24 it was shown that the models withva€@iables could achieve acceptable accuracy and
even faster improvement due to decreased redund@&hege 10 variables were chosen based on PLS
weights.

To simplify models based on the entire databasdsfiad the most influencing variables, values of
PLS weights on the first four PCs were used. That four PCs were used because of the results
related to the percent of the variance explainetthénpredictor variables. 97 % of the model var&anc
was explained in the first four PCs for the heatingrgy use model as shown in Figure 2-25. 99 % of
the model variance was explained in the first f8@s for the electricity use model as shown in Fgur

2-25. Therefore, the first four PCs were assumetietcenough for the analysis on the important
variables.
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Figure 2-24: Percent variance for heating energg usth 10 variables
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Figure 2-25: Percent variance of electricity usedebwith 10 variables

Procedure of defining driving variables consistdved parts. First, matrixes of the original variedbl
defined in Table 2-2 were normalized. Afterwarde first 10 variables that had highest contribution
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to the first four PCs, were chosen as the modebitapt or driving variables. The same procedure
was repeated for each target variable, heatingggnelectricity, and fan electricity use.

PLS weights on the first four PCs for the heatimgrgy use, the total electricity use, and the fan
electricity use are displayed in Figure 2-26, Fg@r27, and Figure 2-28, respectively. If a vagabl
has high contribution to PCs, then PLS weights Haigher values, and consequently it could be
concluded that that one contributes to the targegtble. In Figure 2-27, Figure 2-28, and Figur292-
driving variables for energy use in November amshn

PLS Weights for Heating Energy Use

Tout
00 = 320.5B40
W 320.RT40
£ 0-03 m 320.04.RT40
2 0.01 5 ®320.04.RT50
g 0.01 pC1 - L B W 320.02.RT40
= 36.03.LK
-0.03 — ®36.04.1K
= 36.06.1K
o PCs 36.07.LV

Figure 2-26: PLS weights of 10 important variablesheating energy use model

By using procedure for model scaling and findingvidg variables based on PLS weights, it was
found that the most important variables of the ingaenergy use are outdoor temperature, control
parameters and temperatures in the substations@né of ventilation parameters. These ventilation
parameters were related to the AHUs that were mastuse. In Figure 2-27, PLS weights of the
different variables on the first and second PC dpaite similar values, while on the third and fourth
PLS weights were different. Therefore, the valuE®IoS weights on the third and fourth PC could
explain variable importance. Based on that, itasgible to conclude that the heating energy use was
influenced by the operation parameters rather liyahe outdoor temperature.

PLS Weights for Electricity Use

Tin_R4031

0.12 ~ mOCC_R4031
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-0.18 PCs 36.07.JV50

Figure 2-27: PLS weights of 10 important variableselectricity use model
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PLS Weights for Fan Energy Use
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Figure 2-28: PLS weights of 10 important variablesfan electricity use model

Results in Figure 2-28 show variables that coulalar the total electricity use in November. Among
10 variables, occupancy level, indoor temperatane, parameters of the fourth AHU were variables
that could explain the electricity use well. Theith AHU was supplying the most typical occupied
part of the building. Results in Figure 2-28 shavat occupancy level could be included in the
electricity use model. In this model, occupancyeleand indoor temperature had significant
contribution already on the second and third PQydtiee values of PLS weights of the occupancy
level and indoor temperature should not imply dlsecegative influence on the target variable,
because the original variable matrix was normalizedhe case of normalized original variable matri
values of PLS weights should indicate variable ingace to the model.

1.3.7 Conclusions

The PCA application in linear models was implemdnte utilize BEMS data for energy use
estimation and identifying of driving variables ehergy use. The idea was to relate building
information with the building energy use. PCR andSR were used to relate BEMS data to the
building energy use. BEMS data were used as ofligiredictor variables, while the heating energy
use, the electricity use, and the fan electrickg were target variables. To simplify models and fi
the most influencing variables, values of PLS weigin the first four PCs were used. The suggested
approach was tested on the low energy office lugldiocated in Trondheim. The analysis showed
that it is possible to utilize PCR and PLSR to yp@lBEMS database. The methods are robust and it
is possible to perform different analysis. In thisalysis, these methods were implemented only to
relate BEMS data to the building energy use anddémtify important variables. The important
variables were identified by scaling the modelsthiis case, the model scaling meant that the models
based on the entire BEMS database were scaleddelswith fewer variables.

The results showed that the heating energy udeeitotv energy office building was influenced by the
operation parameters rather than by the outdoopdemture. The total electricity use could be
explained by using occupancy level, indoor tempeeatand some of the AHU electrical signals. The
AHU electricity use could be explained by using itygut electrical signals of supply and exhaussfan
However, results indicated that the regression msogleould be updated on monthly level. All the
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simplified regression models with 10 variables la@deptable accuracy. This indicated that driving
variables obtained by using suggested approachl dmulised to explain building energy use.

Further, this approach could indicate possibleaea®f change in building energy use. Current tesul
showed that PLS regression method was more accuratzovering the heating energy use, while
PCR was more accurate in recovering the electriggy. The results showed that important variables
were different for different months in the casehefating energy use. The total electricity and fan
electricity use could be defined with the samealdds in different months. The total electricityeus
could be defined by using occupancy level and ifigutsignals.

1.3.8 References
[1] CAMO, The Unscrambler® X.

[2] Jackson, J.E., A user's guide to principal compts28®3, Hoboken, New Jersey: John Wiley.
569 s.

[3] Dijuric, N. and V. Novakovic, Identifying importamairiables of energy use in low energy office
building by using multivariate analysis. Energy @hdldings, 2012. 45: p. 91-98.

[4] Measurement of Energy and Demand Savings. Vol. &iniel 14 2002: ASHRAE.
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1.4 Experience 3. Modeling Occupant Behavior in multifamily houses

(Marcel Schweiker)

1.4.1  Subject of the work

This work is dealing with the frequency of usagéd #me set-point temperature selection of AC-units
for cooling and heating in an international studdmrtmitory in the Tokyo area. Both parts are diyect
related to the energy used within the building. Beéting of the measurement of 5rmoms with
multiple possibilities to adjust the indoor conalits, described in detail in [1], allows the obsé&ora

of the individual occupant's behavior in a labongatike setting.

Table 2-3: Data on building

Type of building International student dormitory
Dimension 320 rooms of 15 feach

Location Tokyo, Japan

Thermal characteristics Low level of insulation and single-glazing windowgh aluminum frame
Type of observed spaces Single-room apartment

Year of construction 1989

No. of floors 5

Windows, orientation One window each (either E, S, W)
Window opening sliding

Shading devices Fixed overhang

Sources of heat gains Fridge, computer, lights, occupancy
Activity, sex and age of occupants Students (M or F, 20-35)

Origin of occupants 27 different countries from 5 continents

1.4.2  Building characteristics

The building was opened in 1989 and is a 5-stobieittling with 320 identical single rooms (see
Figure 2-29). The construction is made of conckeité little thermal insulation and single glazed
windows. The single rooms of 15m2 each including throom are oriented to east, south or west.
Each room has one door facing to the corridor arelwindow with curtain on the opposite side, and
is equipped with one air-conditioning unit for Hegt and cooling. The residents are free to use
electrical fans or other measures to keep theimsoas comfortable as possible without using the air
conditioning unit.
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Figure 2-29: View into one of the rooms.

1.4.3 Aim of the work

In reality, the occupant behavior is expected tanflaenced by quite a large number of factorshbot
external and internal. In order to apply the impanttfindings related to occupant behavior in
disciplines such as social sciences and neuraiseseto the empirical models based on the measured
data within the field of building sciences, this nwadescribes an empirical determination of the
external and internal factors and their constamtgtfe case of air-conditioning usage in a residéent
setting under Japanese climatic conditions. Knovgingh model and the influence of each factor on
the behaviors will be useful on one hand to dedigiildings, especially residential buildings,
supporting the occupants towards a less exergyuooing lifestyle with sufficient well-being and on
the other hand to help support the occupants ireftigting buildings towards also the less exergy
consuming lifestyle.

1.4.4 Database characteristics

Table 2-4: Database characteristics

Number of buildings 1
Period of measurement 11.01.2008 -

29.06.2007 - 13.08.2007

11.02.2008

Duration (days) 46 32
Number of observed spaces 39 34
Number of observed spaces with window 19 24
sSensors

Items Interval
IF1. Climate Outdoor air temperature, humidity, wind speed, rs@diance 2 minute
IF2. Building envelope Not in database
IF3. Building service & Systems
IF4. Operation & Maintenance
IF5. Indoor environmental quality Indoor air temperature, humidity 2 minute
IF6. Occupants’ activities and behavior | State of AC-unit (on/off/set-point temperatite) Event
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Window state (open/closed)

IF7. Social and economical aspects Occupants personal preferences, individual chaiatts (age,
sex, height, weight), personal background (couotrorigin,
sleeping habits during childhood, ...)

Y not measured, but derived from data

The data base used for the present investigatiomesdrom two measurements in above described
building. The two measurements were conducted ardhe hottest weeks of Japanese summer in
2007 from 29 June to 13 August and the coldest si@ekvinter, early 2008 from 11 January to 11

February. Figure 2-30 shows the frequency of ptiexaoutdoor air temperatures both in summer and
winter.
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Figure 2-30: Distribution of outdoor air temperatiduring the summer measurement in 2007 and
that during winter early 2008.

For the physical measurements, one wireless temperand relative-humidity sensor and another
wireless sensor logging the times the window wasnep or closed were installed in each of the 39
observed rooms. As well as this, additional senseese installed to measure the outdoor air
temperature, relative humidity, solar irradiancd aind speed (wind speed was only measured for the
summer case). The occupancy could not be explioityprded during the daytime, but the students
stated the nights they were not sleeping in thedms as well as continued absence for more than a
day. The measurement took place in all observethsaat the same time with a logging interval of 2
minutes. This garnered 30325 data sets for eacim ffoo the six-week summer measurement, and
22080 data sets for the four-week winter measurem&hese physical measurements were
accompanied by an introductory written questiormasurvey and a personal interview, which
included questions about the students’ current @axt cooling and heating behavior, their thermal
background, lifestyle, preferences, knowledge afspee heating and cooling strategies and personal
evaluation of the effectiveness of those strategies

1.4.5 Method/Methods applied for the data analysis

The model development consisted of three steps. mbdels derived in each steps were called
standard, advanced and final models for winter suntimer season, respectively. For the standard
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models, the use of the AC-unit for cooling and megin relation to the mean outdoor air temperature
was analyzed using the logit model. The analysis @a@ne for the whole day period of 24hours, and
then for three different periods within the daymady daytime (8am to 6pm), evening (6pm to 12am)
and night-time (12am to 8am). The parameters oftioelel were calculated with the statistical
software package R as a function of the mean outdiodemperature, based on the two-minute data
points of the respective period of time.

For the advanced models, factors other than théooutair temperature during the night in question,
were analyzed.

The general form of a logistic model is expressetblows:

1
Plog = b Toar I, By @)
where, pg is the probability that the AC-unit is usedy,Tis the mean outdoor temperature of the
respective night, ;xare additional factors ang 4 as well as f3are constants to be determined by
statistical analysis. The simplest model, which waed for the standard model, is the one with a
single parameter of mean outdoor temperature o@lyely the model with;& 0 except for j=1. For
the advanced models, those factors having a casftisignaling an above-average linear relationship
with the AC-unit usage were taken as the startmigtgdor the selection process of a rational stiati
model.

As the decision criterion during the selection pss; Akaikes Information Criterion (AIC) [2] was
used to determine whether the alternative modébeter than the current model. The AIC is
calculated by taking into account the fit of thedabcompared with the data together with the number
of variables used in the model. The lowest AlC-edhkisupposed to be calculated for the model which
best describes the measured data with the minimumbar of variables necessary. When comparing
two models, only the absolute differentgc between their AIC values should be evaluated and n
the absolute values themselves. In order to defireemodel as being better than the othgg should

be greater than 2 [3]. Because of quite a few ptssiombinations of variables to define a moded, th
“stepAlC” function within the software R, which amatically selects the model with the smallest
value of AIC, was used [4]. In addition, NagelkéskE index was calculated, which was adapted to
mimic the R analysis for logistic regression [5] to have aosetindex when comparing the different
models.

For the final models, having the same form as showeq. (1), the advanced models were amended
with individual factors in order to show their infince on the behavior of AC-unit usage at nighetim
following the findings of [6]. Due to the fact thabne of the students grew up in Japan, it was
possible to include a variable related to differdimhate groups referring to their region of origirhis
was called “thermal background”. Using the climaigp of Koeppen [7], the students were sorted into
four groups: hot and dry, hot and humid, moderaie] cold climates. There was no student from a
polar climate region.

The “stepAIC” function was used again in ordereduce the number of variables implemented into
the logit model for predicting the percentage of-&@it usage in relation to external and individual
factors.
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1.4.6 Results

Influence of season and time of day

Figure 2-31 shows the relationship between theamesoutdoor air temperature and the percentage of
persons using the AC-units for cooling. Each pémresents the average of all students for eadeof t
43 measured days in summer. The lines represertigsiefit of these plots and are similar to those
presented in the foregoing studies for window opgnibehavior [8,9]. Compared to the curve
presented by Nicol and Humphreys [10], where thieievaf temperature resulting in half of the
persons using AC-units £J) is around 29°C, we get a similar value for theecaf daytime, but a
much lower value of &, 23 to 26°C, which in turn means a more frequeset af the AC-unit for all
other periods of the day.
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Figure 2-31: Relationship between outdoor air Figure 2-32: Relationship between outdoor air
temperature and percentage of persons using AMmperature and percentage of persons using AC-
units for the case of cooling in summer time. TheUnNits for the case of heating in wintertime. The

outdoor air temperature is the value for thin dotted lines alqng with the bold Ilnf_as N
) . - between show the limits of the 5% confidence
respective period as shown inside the graph. The interval of the respective line
thin dotted lines along with the bold lines in
between show the limits of the 5% confidence
interval of the respective line.

Looking at the difference between the times ofdhag, it is clearly visible that the AC-unit is used
more during night-time than daytime. This can bpl@xed by the lifestyle of the students, who have
to leave their rooms in order to go to universitywmrk. Due to the circumstances of this study that
the real occupancy was known only for the nightetirthe lines for other periods must be too low if
we assume an occupancy rate of 100%. For the piediaf a similar type of building, these lines can
be used as combination of occupancy and behaviw.ahalyses of all other models to be described
later were based only on the night-time period, neltbe true occupancy rate was known.

Figure 2-32 shows the logit lines for the heatiagec While the logit curve presented by Nicol [11]
for heating with general heating devices approach@8% around a value of mean outdoor
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temperature of 2°C, the curves shown here are raitér. Especially the flatness of the curve foz t
night period shows that around 40% of people slegpout any heating system regardless of the
outdoor temperature and adjust themselves withtiaddi layers of clothes and blankets. This
statement can be partly supported by the answeengo the questionnaire survey. The question
whether one prefers to sleep in a room a) heatddam AC-unit, b) heated with other means than an
AC-unit or c) not heated at all, was answered byentban 33% of the students with c¢). This number
is a bit lower than the 40% obtained from the mesbdlata, but still in the same range.

By comparing both figures it can be seen that teecgntage of AC-unit usage is much more
dependent on the outdoor conditions during sumimer than winter time. The most obvious reason is
the greater possibility of clothing adjustment dgriwintertime than in summer time, although
clothing adjustment was not part of our survey tler reasons are the special conditions within this
dormitory, which has in general a higher indoor genature than other buildings due to the high
density of people, lights and electronic applianddse latter reason also applies to the comparison
with the logit lines presented by Nicol and Humptsrgl 2].

Influence of foregoing nights

The following results were derived from a closeskat the decision to sleep with the AC-unit on or
off. This was in particular interesting to investig, as it is a decision made before knowing haw th
thermal conditions will change during the sleepiagiod and results in a different amount of exergy
consumption for cooling and heating during eactioger

According to the statistical analysis of variougeemal factors and their influence on the AC-unit
usage, the best prediction was achieved by corisglére mean outdoor air temperature of the night
in question T,, the mean outdoor temperature of the first andl thight before, Jayns Toav-na and
only for the winter case the mean outdoor tempegaduring daytime just before the night in question
Toav-ae Table 2-5 shows the corresponding values of entstfr, (3-3) and the comparison between
the standard models and the advanced models. Weneetl model for the summer case shows a
better fit to the measured data; the differencali@ value, Aac, is 17.9 and also the’fdex is a
little bit higher, even though it is still very lolespite a high variation in relative humidity hgr the
measurement period between 46% and 99%, the tists concerning humidity, namely the mean
relative humidity of the respective night, the e@mgnand daytime before as well as the night
beforehand, did not show any linear or other catiehs with the usage of the AC-unit.

Table 2-5: Comparison of standard and advanced fsotte predict the percentage of persons
using their AC-units during night-time in summedaminter

o i R R R, AlC R?
standard  10915+0.67 0.374+0.03 - - - 1571.8 0.184
summer
advanced 71663+0.82 0.245+0.42 0.120+0.04  0.0914+0.03 - 1553.9 0.203
, standard  0.888+0.09 -0.0286+0.04 — - - 1250.1 0.001
winter

advanced 0.657+0.20 0.0147%0.04 -0.0221+0.04 -0.0382+0.03 -0.0469+0.04 1252.7 0.007

1) All of Bj are related to the mean outdoor temperatiteor respective nigh32 for one night before}3 for three nights
before;p4 for daytime

2) AAIC, for summer: |1571.8 - 1553.9 | = 17.9

3) AAIC, for winter: [1250.1 - 1252.1 | =2
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In the case of winter, the advanced model hastle higher AIC value compared to the standard
model; it is not possible to conclude which modedatibes the data better, since the differencd@ A
value between standard and advanced, 2, is tod.shte R-index is also extremely small. For
simplicity, 3 to 3 were combined into one variable, the running nmmadoor temperature.

Influence of individual factors

The final models include the temperature relatetiofs and several individual factors. The variables
and parameters of the final models for summer aimiewcan be found inj]. A separate discussion
of each factor is given in Appendix B df][ In order to be able to judge how much one fagiche
model influences AC-unit usage behavior, the impase of one factor compared to the others can be
calculated as the product of the absolute valuthefcoefficient (the respective value of 3) and the
range of the variable. This product was called‘tmportance value”.

Comparing the AIC values of the models, the diffieeein AIC valuesAyc between the advanced
models and the final models as well as betweensthadard models and the final models are
exceeding 300 in the case of summer and 400 icdke of winter. As stated above, a value of 2 is
necessary to be able to declare one model as llesteranother, therefore the result shows that the
advanced model leads to a much better predictigdheofndividual occupant behavior by considering
various individual factors. This is also supportsdthe R-indices that are both in a range between
medium and large for the final models.

Temperature

o related factors

a) Preference

Subjective evaluation

b) of effectiveness

) Current thermal
environment

mmer
winter
d) Thermal background
) Behavioural back-
ground (childhood)

f) Geographical
background

g) Demographic data

Individual differences
in rooms

h)

T T T T T T 1
o 2 4 6 8

Sum of importance values

Figure 2-33: Comparison of the sum of importanakigs for groups of variables

The results of summing up thmportance values of the respective factors shomenpaesented in
Figure 2-33. Quite different results for summer awidter can be observed. In summer, the most
important groups are “T) temperature related fattand “h) individual differences in rooms”, while
on the other hand, the least important are “e) Wieha background” and “f) cultural background”. In
winter the most important are “f) cultural backgndll and “g) demographic data”, while the least
important are “T) temperature related factorsz-fQ and “c) current thermal environment”. This
showsthat the external factors have a strong influemeehe behavior in summer, but a very small in
winter. Similar findings are present in the desigrthe new European Standard EN 15251, where fkere
no further change in the comfort limits below andmor temperature of 1@
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The sum of importance values of “T) temperaturatesl factors* together with “hindividual
differences in rooms” anthat of all other factors turned out to be 11.2 44.6 for summer and 4.0
and 34.4 for winter, respectively. This shows tfaaitors generating from experience, attitude and
origin affect the reference level as much as theraal conditions in summer and even much more in
winter.

Application to set-point temperature

Analyzing the data from the field measurement is\wabs0 found that there is a rather huge difference
between individuals in the indoor air temperatwefgrred and chosen. To analyze these differeiaces,
linear multiple regression analysis was done far $hme factors that appeared in the final models
described above.

One would normally define the desired room air terafure to be the temperature chosen by the
occupant and displayed on the remote control (@d#led the set-point temperature). However, the set
point temperature was neither observed within teasarement nor asked in the surveys. Even though
the indoor air temperature is especially in thetfininutes after switching on the AC-unit different
from the set-point temperature, it is reasonabkestume the room-air temperature being similaneo t
set-point temperature for the steady-state casiehvessumes that there was no change in the sthtus
the AC-unit. Additionally, one can say that thedod air temperature, not the set-point temperature,
must be the temperature judged by the occupantiag lzomfortable, because otherwise they would
have changed the status of the AC-unit with theotergontrol.

Therefore, the decision was made to use the indoaemperature instead and to analyze the data
from the student rooms according to the averag@efnaximum air temperatures during one period
of the AC-unit usage. This led to the determinatibthe constants for the linear formula of thedod

air temperature as a function of the same fac®wpesent in the final models:

Bing = @ T by8, .0 T haxy +---+ bix, )

The values for the coefficients can be found in].[38ith the result of linear regression analyses, a
direct interpretation of the coefficients can beneloln such a way, it can be seen, that the clafice
set-point temperature is influenced by the outdimmditions together with individual preferences and
characteristics. For each degree rise in the outmoperature, the set-point temperature increlages
0.43°C, while for example those who stated to prefieeping with an AC-unit on, maintain it at more
than 2°C lower than those who prefer not to havewittched on during nighttime. In winter, the
outdoor conditions have a neglectable influencehenchoice for set-point temperature; each degree
rise in the running mean outdoor temperature léad@s increase of the set-point temperature of only
0.00012°C. On the other hand, the influence ofviddial preferences increases; the before mentioned
factor related to the preferences leads in this tasn increase in the set-point temperature85(C4.

It must be easy to imagine, that such differeneeldelo corresponding variations in the energy usage
as well.

Effect on energy usage

The obtained regression models can be used dirmtlgimplified steady-state calculations of the
energy usage for AC-unit usage. Please refer tp fldrda detailed description of the calculation
procedure.

Based on the regression models, one can assumgype® of occupants, one preferring to sleep with
an AC-unit switched on, the other not. As foundthg approach presented above, the one who does
not like to sleep with an AC-unit is still usingwhen necessary. However, the usage has a lower
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frequency and in summer a higher and in winterveetoset-point temperature. The choice towards a
lower indoor room air temperature in winter lealdsréby to a reduction of the energy usage by 25%
to 30%. The combined effect of indoor air tempemithoice and percentage of AC-unit usage leads
to a reduction of 40% to over 90% and strongly dejgeon the outdoor air temperature. The reduction
is in winter larger with higher outdoor temperatarel in summer with lower outdoor temperature.

1.4.7 Discussion

Regression analyses were chosen in order to antigzmfluence of physical and individual factors
on the frequency of AC-unit usage for cooling aedting as well as the chosen set-point temperature.
This method allows a straight-forwarded combinatbfactors in a continuous form (e.g. temperature
levels) with those being in a binary form (e.g. den into one combined model. Limitations are ia th
individual modulation of each variable. l.e. a wate can either influence on the outcome in a pasit
manner over its full range or in a negative manbat,e.g. not in a U-shaped manner. To overcome
this limitation, a variable could be included natyoin its first power, but also in its second,rthi...
power. One of the main potential of this applicatis, that the outcome of the regression analysis (
equation to calculate a dependent variable basedndividual variables together with their
coefficients) can be easily implemented in advarsiguilation tools, such as IDA-ICE or TRNSYS.
Using the AlC-value for model selection assures e&dvhich have a good fit, while being as simple
as possible. Nevertheless, such procedure is f@lidested models only, so that it can be used as
done in this case to decide whether a variable Idhiog included into a model or not, but not to
compare two distinctive models. Calculating the amgnce values for each variable in the model, the
magnitude of the influence on the outcome varigllere frequency of AC-unit usage) can be
compared between all variables. The importanceegahppeared to be easy in its application, but
strong in its interpretation. It could be therefarged in order to evaluate directly the influenée o
various factors on the energy usage; and not afjoae here directly over the occupant behavior.

In conclusion, the methods applied here to mod#lAC-unit usage, could be used to derive models
for energy usage, including a well established @doce to decide on the acceptance or rejection of
single factors and statements with respect to thgnitude each factor has on the outcome.
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15 Experience 4: Analysis of the occupant behavior irelation to the energy concept of an
office building

(Fatma Zehra Cakici, Karin Schakib-Ekbatan, Marcel Schweiker

15.1 Introduction

Office buildings represent an important part of dwing environment. With respect to energy
consumption, occupant satisfaction and behaviomamghwhile issues in the context of sustainable
office buildings with innovative technologies andhterials [11],[6],[8]. The experiences show that
there is often a gap between the predicted enemnsuwmption based on simulation and the
consumption during the day-to-day operation oneehthilding is in use. Within the complex bundle
of aspects such as design, construction, maintenamed occupant expectations the occupant behavior
might not fit with the energy concept and causenteproductive behavior. The “Desire for Control”
[2] over ambient environmental conditions such exagerature or indoor air quality however has a
strong impact on the well-being of the employedy.[The understanding of the relationship between
building and user behavior therefore plays an ingwdrrole in the consideration of the energy
consumption. Thus, the focus of this work is tolesg patterns of energy-related behavior such as
window-opening at the workplace, which is the mdetorite taken adaptive opportunity [1].
Perennially gathered data for outdoor and indoémate as well as occupant behavior from a
monitoring project in a German office building wighpassive cooling concept are analyzed [5]. In
contrast to the other works, which are using com@atistical analyses in order to analyze the
reasons for the discrepancy between predicted amitoned energy consumption, this work follows a
different strategy. First, simple statistics of ggant behavior are shown to analyze differencesaue
the orientation of the room and the occurrenceatfaptimal behaviors. Second, logistic regression
analyzes are presented in order to analyze thgeimdle of indoor and outdoor conditions.

1.5.2  Subject of the Work

The Ostarkade is an extension of the building cemplf the KW Bankengruppe based in Frankfurt
am Main, the largest city in the German state ofdda. Frankfurt is located in central Germany with
a temperate-oceanic climate with relatively colateis and warm summers. The building is naturally
ventilated and cooled in summer with a nighttimentiation concept. Above the two-level
underground car park, the building has five floofsnainly offices and meeting rooms, hosting about
350 employees. On the fourth floor, there are groffipes for exchange traders, while the north-west
part of the building is used for special purposaffices and apartments are grouped around an atrium
with glazed roof. This allows natural lighting fibre traffic zones which lead into the atrium. Tokena
enough space available for a large conferenceonalhe ground floor, the atrium begins on the first
floor.

Table 2-6: Building characteristics

Name of the building The KfW Ostarkade

Type of building Multi-storey office building

Dimension 17402 m (8585 nf heated)

No. of Employee ~350 employees

Location Frankfurt, Germany

Thermal characteristics Low energy standard of building envelope (U-valuedls 0.24 to 0.5 W/m2K, windows 1.5 W/
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m2K))
Type of observed spaces  Office rooms
Year of construction 2002
No. of floors 2-level underground car park + 4 office floors fidbr apartments on top
Windows, orientation Mostly E and W
Window opening Tilt-and turn
Shading devices External sun protection (automatic + occupant driwede)

The construction of the multi-storey office buildinvas completed in 2002. The building shows an
ambitious integral planning concept. From the begig, the Kf\W Bankengruppe outlined very strict
design criteria in terms of energy efficiency sirthe group is Germany’s largest development bank
with funding programs for energy efficiency in diig and new private buildings. Therefore,
concepts for saving water and energy optimizatmmhiating, cooling, ventilation and lighting were
developed for the Ostarkade building.

Figure 2-34: Exterior view of the KfW Ostarkadelbinig Figure 2-35: Ground floor plan of the
from the South-East building

The building's structural system is a reinforcesharete construction. . The fagade is insulated
externally and has a U-value between 0.24 and Gr62W The south facing facade of the building is
a double-skin fagade for noise reduction reasoh& Mofs have a foam-glass insulation and are
equipped with roof greening to a large extent. ¢bmpactness of the building and the high insulation
standard minimize its transmission heat lossesh\dit average U-value of 0.54 W/m2K (facade
including windows), the building exceeds the reemients of German Energy Saving Standards of the
year 2002 by approx. 30%. In the standard offibesconcrete ceiling is directly exposed and merely
surfaced with a thin layer of plaster. This thermalss increases the building’s thermal inertia and
was essential for the passive cooling concept wight ventilation. Pipes, cables and ducts areitaid
elevated floors.
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Figure 2-36: Natural ventilation via the atrium is Figure 2-37: The atrium lights the traffic areas
used for night ventilation and enables natural ventilation

A moderate percentage of glazing, an exterior aatmnshading system and the use of solar control
glass reduce the solar heat gains from outsideh tigdows, light-diverting blinds and the proximity
of workplaces to the window enable very good usedaylight, thereby reducing the amount of
electricity required for artificial lighting. Thensulating glazing that is used has a less than dD0%
total solar energy transmittance, a U-value of\¥/f2K and 70% light transmittance.

glare-free use of daylight busy road

The building combines a high energy standard wiigin loccupant comfort. The natural ventilation of
the offices and the night ventilation cooling copickave proven good performance in practice. Even
in 2003, the hottest summer in Germany within @t hundred years, comfortable conditions were
maintained in the offices without mechanical vextidn or active cooling. This required appropriate
manual ventilation with windows and the correct wéehe sun protection. Excluding the energy
consumption for the building control equipment &fdis well as for other specific technical servjces
the annual primary energy consumption was less ffdhkWh/mz in the third year of monitoring
which is close to the predicted value of 107 kWh/ifus the energy consumption is well below that
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of conventional office buildings and in this casmws a good fit between predicted and measured
values.

Figure 2-40: Offices with operable windows and puotection, allowing natural ventilation and
natural lighting

Window control options

The building management system (BMS) which autoradyi operates the top lights in the fagade and
the top lights facing the corridor, provides intétent flush ventilation for 10 minutes in the momg
before working hours. After that the occupants hineefollowing control options: Windows can be
opened completely and also tilted by hand. Thditds can be opened as well by the occupants (see
Figure 2-41). The control device provides an addal button for intermittent ventilation.

toplights up/down
sun protection up/down

memory button for prefered

ti f tecti intermittentventilation
pasticn of sun protection

glare shields
up/down

Figure 2-41: Control device and its functions

15.3 Aim of the work

The main focus is to identify energy-related oceugdaehavior patterns for window control and the
usage of sun protection devices in relation to eotdn indoor climate. Factors like season, logatio
of the office or time of the day are consideredvali. The objective of this analysis is to evalulatev
much the occupants interact with their buildingairmanner suitable to the building concept with
natural ventilation.

154 Database characteristics

The analyses for the room sample (see chapterafe)ased on a scientific monitoring in the context
of the research program ‘SolarBau’ 2001 to 200&d&d by the German Ministry for Economics and
Technology BMWi) and was continued on behalf of kie/ until 2011.
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Table 2-7: Summary of database characteristics

Number of buildings 1
Period of measurement
Number of observed spaces with ~35
window sensors

Number of observed spaces with C® 5

Since April, 2003 with varying intensity

concentration

Iltems Interval
IF1. Climate Outdoor air temperature, humidity, wind speed, rs@diance 10 min
IF2. Building envelope Not in database
IF3. Building service & Systems 10 min
IF4. Operation & Maintenance Monitoring of heating, cooling, lighting and veatilon system, 10 min

and related energy flows
IF5. Indoor environmental quality Indoor operative temperature, humidity, (GO 10 min
IF6. Occupants’ activities and behavior Window state (open/closed)

Presence

Event

State of sun protection (open/closed)
Usage of lighting equipment

IF7. Social and economical aspects none

155 Measurements

The KfW building has been monitored, and data ofices has been collected since April 2003. In
the database there are mainly three types of datahwcan be grouped with respect to outdoor
conditions, indoor conditions, and actions of o@ntp or events. Among these data, some have driver
effect, and some others are driven. Drivers areg@és in indoor and outdoor conditions while driven
ones are defined as behavior in response to theseges. Table 2-8 summarizes the monitored data

for all conditions as follows.

Table 2-8: Monitored data

Outdoor Indoor

Behaviour

Solar radiation [W/m2]
Rain — amount [I/m2]

Room air temperature [°C]
Surface temperature [°C]
Ceiling slab temperature [°C]
CO, concentration [ppm]

Rain — event [yes/no]
Light intensity— horizontal [Ix]
Light intensity - South [Ix]
Light intensity - East [IX]
Light intensity - North [IX]
Light intensity - West [Ix]
Outdoor temperature [°C]
Wind — velocity [m/s]
Wind — direction [°]

CO2 content in air [ppm]
QOutdoor humidity [%rH]

Occupancy [0/1]*

Window contact [0/1 ; Reed contacts]*
Top light control [0/1 ; Reed contacts]*
Sun protection [% of closure: 0% = open
to 100% = closed]

Electricity consumption [kWh]
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*for analyzes aiming at duration in terms of daigans, data were transformed from 10 minute inteteaminutes

A weather station is located on the top of thedind, providing data regarding the outdoor condiio
for all offices, such as temperature. However, thieroclimate on the fagades can differ, e.g.
depending on the intensity and direction of windcation and types of the offices vary as described
in the following. The office rooms can be groupedfour types; standard offices, traders’ offices,
large offices and others with a special functioms$e. Traders offices are special offices, facmgls,

with before mentioned double skin facade and spgcidesigned ceiling panels for acoustic
performance and mechanical cooling. They are eeclddom the analysis. Large offices which are
located in four directions of the building are 2iBes larger than standard office spaces and one of
them is located at the corner with 2-side windowhjch enable cross-ventilation. Other special
offices include open-plan offices and meeting roomkich differ from each other in facade type
(single/double skin), air conditioning and diffetiation in function in use. All of them are also
excluded from this analysis. Standard offices allehthe same size (~20m2), facing mostly east and
west (one is facing south). They have one fixedtammoperable windows, internal top light windows
above the doors (to allow for night ventilation ahgh the atrium) and sun protection elements
(operated both manually and automatically). Theyarcupied by one or two persons.

Room Sample

Due to the diversity of office usage in the builgliand their different it was decided to only amaly
standard offices in terms of occupant behaviorc&itne building was completed and started to be
monitored in 2003, the starting year for the aredywas selected as 2004. The analysis period was
determined as 3 years, from Januafy2D04 to December 312009.

In the database, besides the data of outdoor d¢onslitthere are several data indicating changes,
behaviors and events in the building. Among indoonditions data, five data is available for all
offices, which are presence of the occupant(s),dawn contact, top window control, room air
temperature and use of sun protection, while otheesnot available for all offices, including €O
concentration, surface temperature, component teaafype and electricity consumption. A summary
of the variables for monitored standard officesh®wn in Table 2-9. For the analyses presented in
chapter 6, we concentrate on those parametershvelnee available for all 16 rooms of the sample;
therefore C@concentration and surface temperature are naided.

Table 2-9: Variables for monitored standard offices

Window [Top window| Room air COz Surface
Room ID|Occupancy, control control temp:ratur Concentration temp:ratur

East | EO1 . . . .

E02 . . . .

EO03 . . . . ;

E04 . . . . : ;

EO05 . . . .

EO6 o o o R .

E07 . . . . . ;

E08 . . . .
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EO9 . o . .

E10 . . . .

Ell . o . .
wo1 o . . . .
w02 o . . . .
W03 . o . .

West

wo4 . . . .

W05 . o . . . .
W06 . . . .

1.5.6 Methods

Extraction of the Data
Monitored data was compiled with MoniSoft . Reqdirgata for the analyses have been extracted
from the software. The data obtained were proceasddmplemented into SPSS

Analysis Method
A variety of statistics is applied to explore paite of user behavior, which are described shortly
below.

a) t-tests. To explore group differences with respectdioration of window openingseasonor
orientation of the officet-tests were applied. The t-test assesses whisheneans of two groups
arestatisticallydifferent from each other [4], e.g. east versustweiented rooms.

b) Logistic regression.The method allows predicting the outcome of a lyirdependent variable
by modeling the probability of an event suchvasdow openingyesor no). The analyses are
based on one or more predictor variables suabugdoor temperatur@r operative temperature
[3].

c) Calculation of optimal duration of window opening. To analyze if the building concept and the
user behavior concerning window opening fit, twpraaches were chosen.

1. Based on the paper of van Paassen, Liem & Gronii®jehe necessary respectively optimal
ventilation duration for the offices was calculatedluding factors such as the opening angle,
effective ventilation opening, height and widthtle¢ windows which results in an effective air
change for each window. Taking into account the Ipemof persons in the room and the
specific fresh air volume (10 liter per person aedond) the optimal duration of ventilation
was calculated, revealing that 18 minutes of vatitih per hour would be adequate. Taking 8
hours of work as a basis and taking into accouataiitomated ventilation in the morning,
7x18 minutes were taken as a basis, resultingmmadmum of 126 minutes per day.

2. Recommendations for optimal ventilation in officaee widely spread in the context of
building science, occupational health and safety@mfort. Looking at German websites and
literature the recommendations for an optimal wimdipening on a working day vary: e.g. 3
minutes every hour (8x3 minutes = 24 minutes) aio 5.0 minutes every 2 hours (5x10
minutes = 50 minutes)[12, 13, 14]. Taking into actothe automated ventilation before
working hours, the calculation for the optimal wand opening duration was calculated as
follows: 4x10 minutes (=40 minutes per day).
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Difference between outdoor and indoor temperature.

Regarding adequate window opening and energy caosumas well as comfort the difference
between outdoor and indoor temperature might phaiyrgortant role. For the analyses this difference
was calculated. To separate the summer from théewseason, data for window opening behavior
where taken for which theutdoor temperature is high¢nan thendoor temperature.

1.5.7 Results

Table 2-10 shows descriptive values for parameatsgarding orientation of the offices and season
based on data from 2004 to 2009. Differences ah dancern daily means of indoor temperature,
occupancy as well as opening of window and toptligls expected there are statistically significant
differences between winter and summer mean outmoperatures, and no differences between east
and west outdoor temperatures. Generally indoopégatures are about 2 degrees Celsius higher in
summer, and offices oriented to the east show thfighigher temperatures in summer. Mean time
duration for occupancy is comparable between eatwaest offices. Generally duration of window
and top light opening is higher in summer seasatin, nger duration for the top lights in compariso

to the windows. For both seasons duration for wmapening is significantly higher in west offices,
while for the top lights it is the other way round.

Table 2-10: Differences between parameters regardimentation and season

@ daily mean values;
sample: 17 rooms

time periode 01.01.2004 — 31.12.2G09
orientation east pb west
season winter p® summer winter  p° summer
outdoor temperature
o 4,9 ox 21,9 = 51 i 22,1
(@)
indoor

21,6 | *** 23,9 >>> | 21,6 | *** 23,5
temperature (°C)

occupancy
. 456 n.s. 456 >>> 442 n.s. 445
(minutes)
window opening
. 27 ok 261 <<< 63 ok 338
(minutes)
toplight openin
p g p g 40 Fkk 457 >> 13 *kk 438

(minutes)

Note.

a. missing data for 2008; the data showed nearly nm@awee in sun protection usage (sun protectionrésl@minantly
closed in the offices), therefore this aspect isimduded in the analyses.

b. Statistical test for differences: t-test (meansthwnot significant n.s., p < .05% p < .01*; p <0Q1***,
Differences between east and west are indicatddmst =, p < .05< or >; p < .01<< or >>; p < .08%<0r >>>.

c. Differences between winter and summer are indicaddunot significant n.s., p < .05*; p < .01**;9.001***,

Influencing factors on window opening

The following figures (Figures 2-42 to 2-49) shdwve fpercentage of open windows in relationship to
operative temperature as well as to outdoor tenwperadifferentiated for season and orientation.
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Black dots represent the percentage of open wingmwvd.0 minutes interval, bars represent the 95%
confidence interval and the black lines show thabpbility of the logistic regression models.

a) Winter

Comparing Figures 2-42 and 2-45, the variabilityttg proportion of open windows with regard to
outdoor temperatures is much higher for the wesinfpwindows compared to the east facing
windows. The occupants of the east facing roomsogening their windows much less, they T
(temperature at which 50% of windows are opendideyond the scale for the east orientation, while

it is 18°C for the west orientation.

In contrast to all presented results in the literat the opening probability related to the opeeati
temperature is negative for both orientations, higher indoor temperatures are related to lower

opening proportions.
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Figure 2-42: Influence of operative temperatureFigure 2-43 Influence of outdoor temperature on
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Figure 2-44: Influence of operative temperature
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on window opening in offices oriented to the westwindow opening in offices oriented to the west
(winter) (winter)

Figure 2-43 and 2-45 show the increase of the pratitity for window opening with increasing
outdoor temperatures. as well as slight increaseoperative temperatures in offices which are
oriented to the west.

b) Summer

The data for the summer season (Figures 2-46 t8) Zdow very similar trends for east and west
facing offices with respect to the relationshipviletn outdoor temperature and opening proportion.
Besides the multinominal regression model presemeed showing an increase towards higher
temperatures, the data points show that therepea opening proportion in both fagades around 27-
28°C with decreasing opening proportion above pluimt. The opening proportion compared to the
operative temperature also shows similar trendedst and west orientation. The T50 is or bothsase
around 30°C.
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Figure 2-48: Influence of operative temperatureFigure 2-49: Influence of outdoor temperature on
on window opening in offices oriented to the eastwindow opening in offices oriented to the east
(summer) (summer)

In general, these results confirm that operativepierature as well as outdoor temperature have an
influence on window opening. While in summer thene only minor differences between the
orientation, offices oriented to the west roomsehahigher probability for window opening in winter

Fit between occupant behavior and the energy concepf the building

a) Winter

The results show that the occupants’ behavior déggrwindow opening fits for over 80% with the
energy concept of the building in offices orientedhe east and over 90% in offices oriented to the
west according to the calculation of an optimalropg duration of a maximum of 126 minutes per
day (see 5.2).

100% 3 Csa%
80% T —
70% T
60% T
50% +——— 0a2% B not optimal
40% +—— 84,3% — optimal

30%
20% T
10% —

0% . .
east (N=1,353) west (N =514)

Figure 2-50: Percentages of optimal and not-optimaldow opening (max. 127 minutes) based on
calculations according to [9 ].

When taking common recommendations (see 5.2) regandindow opening in offices, which is
much stricter, the percentage of optimal openingifilon decreases.
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10% - E—
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Figure 2-51: Percentages of optimal and not-optimaldow opening (max. 40 minutes) based on
common recommendations.

b) Summer

While extended opening times in winter time dingdflad to a higher energy consumption, this is not
the case in summer. However, an open window atittond with higher outdoor temperatures than
indoor temperatures increases indoor temperatusdriclf might decrease thermal comfort) and
necessitates a higher need for nighttime ventiatio order to lower temperatures to comfortable
values until the next morning. Such extra coolirgndnd could lead to a higher demand of night
ventilation which then comes along with an add#iloglectricity demand for fans if forced ventilatio
has to be used.

Figure 2-52 and Figure 2-53 shows the mean valt@sdoor and outdoor temperature in the course
of daily hours for the whole summer periods. Aromaon, the outdoor temperatures start being above
the indoor temperatures.
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Figure 2-52: Differences between outdoor and Figure 2-53: Differences between outdoor an
indoor temperatures for summer working hours indoor temperatures for summer working houts
(east) and open windows (west) and open windows
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For the following analyses topligt opening is exidd, because a distinction between the automated
opening and the manually opening through the oauispeannot be made. In addition to looking at the
development of outdoor and indoor temperaturegligteibution of open and closed window states are
analysed (Figure 2-54 and Figure 2-55). As a tecylethe percentage of open windows in the east
offices is slightly lower than in the west officds.the east offices there is small increase infitisé
working hours and a constant increase during tberrafon hours with a maximum of 40% open
windows at the end of the working day. In the weffites there is a peak with 44% of open windows,
decreasing percentages until noon and slightlyes&ing percentages during the afternoon hours and a
decrease at the end of the working day.

Oopen Mclosed Copen M closed
100%
100%
90%
90% -
80%
80%
70%
70%
60%
60% -
50%
50% -
40%
40% -
30%
30% -
20% 5o H 4% 1 40% H o, | ;.ml | 369 ] 38% 1 39% 1 38% - 30% | 37% | lazsil
20% el : 5
10% 1 (v, 0 N I § N £ S ! S — — 0 I ] '
0% 7 8 9 10 11 12 13 14 15 16 17 18

7 8 9 10 11 12 13 14 15 16 17 18 working hour

working hour

Figure 2-54: Distribution of open windows duringeth) Figure 2-55: Distribution of open windows during
day (east) the day (east)

Looking at the differences between outdoor and andemperatures (Figure 2-56), the graph shows
that around 35% of the windows are open, when titledar temperature is more than 12 degrees
Celsius higher than the outdoor temperature. Thig be due to opening the window in the morning

when the occupants start working, which would ditthe results in Figure 2-54 and 2-55. There is a
peak of almost 40% when outdoor temperature angbointemperature are very close. The percentage
of open windows decreases constantly when the outdmperature is getting higher than the indoor
temperature.
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Figure 2-56: Percentage of open windows in sumragarding temperature differences in the offices

1.5.8 Discussion and conclusions

Regression analyses showed that outdoor tempesadareell as indoor temperatures turned out to be
influencing factors on window opening which is iocardance to the literature [3], [5], [8]. This is
similar to the effect shown by [7] for the Japandat. The authors argue that for the Japanese data
the reason was the availybility of an AC-unit foetoccupants. Thus, the results of this data shew t
same results even without an AC-unit availableofmupants.

Concerning the important issue about the match@tbuilding concept and the occupants’ behavior,
the analyses revealed that for the KfW-buildingtigely long window opening times are necessary
respectively adequate and that more than 80% obtisepants practice optimal window opening.
However, there is potential for optimization, esplg with respect to offices oriented to eastcdin

be assumed that shorter window opening durationldvmad to less comfortable conditions in the
KfW-offices, compared to often recommended windgyerming times for offices. A positive result is
the fact that there is a clear tendency to keemlowrs closed when outdoor temperatures are higher
than indoor temperatures.

A reason for lower percentages of open windowsfficas oriented to the east might be found in the
surrounding of the building. East offices are fgcm street, while the offices on the west side are
oriented to an inner courtyard. Noise coming frdma street might result in the tendency keeping the
windows closed in offices of the east side. Addi#lly, along the east side there are high treemgi
shade in the afternoon hours compared to the inoertyard facing the west offices. As a result,
opening the window during the afternoon working tsomight provide fresh air for the east offices,
but higher temperatures coming from the heatedtgard without trees for the west offices. This
might explain the tendency to keep windows closatihg the afternoon hours for the west offices.
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A variety of restrictions to the findings has to $teessed. Although the database of the monitoring
provides a relatively long time period resultingairtonsiderably number of data, the interpretabion
findings is limited when important information istravailable and cannot be taken into account. This
is for instance true for information on Gi@ the offices (not to mention VOC emission) or jeakive
ratings of the occupants concerning comfort. Desgitong efforts permission for surveys could not
be obtained for the KfW-building. Subjective datatérms of direct feedback of the occupants are a
relevant part when it comes to a comprehensive rgtateling and interpretation of behavior profiles
based on information coming from sensors. With eesgo the data higher indoor temperatures
coincide with lower opening proportions. Howeverisinot clear, which is the depending and which
the independent variable here; the assumptioraisthie higher operative temperatures are a rebult o
less window opening and not that higher temperatigad to less opening behavior. This has to be
investigated in more detail.

Another restriction is that the data does not allawdistinction between automated opening and
manually handling of the top lights. Although thatabase seemed to be very large, with respect to
specific statistical analyses the sample shrunknwdmmparable room samples had to be built (e.g.
office type, orientation).

In conclusion, the findings show that behavior pesfof window opening give helpful hints regarding
the interaction between building and occupants. @éteavior might be counterproductive with respect
to the energy concept. While it is obvious thai@nged window opening in winter is linked to higher
energy consumption, the analysis of the summeatsita for a naturally ventilated building with nigh
ventilation is more complex. In the summer casalgmged window opening at high outdoor
temperatures does not lead directly to a higherggndemand, because no cooling system exists.
However, the increased heat gain leads to a higgand for night ventilation, which in some cases
is facilitated by an electrical fan. In such a wdaye auxiliary energy demand can be increased.
Nevertheless, for the building analyzed in a Gerrolmatic context, such effect was found to be
small due to most people closing their windows wbetdoor temperatures are higher than indoor
temperatures.
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1.6 Experience 5: Building energy consumption modelingwith neural Ensembling
approaches

(F. Lauro)

In the proposed work the aim is modeling buildimgrgy consumption. Several classical methods are
compared to the latest Artificial Intelligence mbdg technique: Artificial Neural Networks
Ensembling (ANNE). Therefore, in this study is simadwow the ANNE was built. Experimentation has
been carried out over three months data sets cofronga real office building located in the ENEA
‘Casaccia’ Research Centre in Rome. Experimentallte show that the proposed ANNE approach
can get a remarkable improvement with respectdd#st classical method (the statistical one).

1.6.1 Introduction

Building energy consumption represents about 30%-40the global energy consumption [1] and it
is the cause of about 40% of €@missions [2]. Therefore, the study of building®y demand has
got in the recent years a remarkable relevancén[8der to improve the management of existing
buildings and the design of the new ones. In thigext, having reliable energy estimations, and thu
accurate models, is the key for energy efficiendyh wemarkable economic and environmental
advantages.

In this scenario, at present there are three diffeapproaches [4] for modeling energy consumption
buildings: Statistic Modeling (SM), Simulation Pragis (SP) and Intelligent Computer Systems
(ICS). The first one, known also as inverse modg]bi, is based on the building behavior. With this
approach a priori hypothesis about the model sirecire made and the internal model parameters are
tuned up through statistical analysis methods hadrtost popular techniques are linear regressidn an
multivariate analysis [4]. Therefore the structusé the models is pretty straightforward but
sophisticate statistical analysis methods are mbe@lee second approach, known also as direct
modeling [5], starts from the physical descriptminthe building which feeds a simulation program.
Such methods need very accurate ambient informatiohighly detailed building description and
information about the occupants behavior. All tinformation makes this approach computationally
very expensive. The last approach, known also igidif Intelligence (1A) approach [4], is based on
Expert Systems (ES) and Artificial Neural NetworfNN). ES are computer systems [6] that
emulates the decision-making ability of a humaneex(ES are designed to solve complex problems
by reasoning about knowledge, like an expert, afés a unique structure, different from traditiona
programs, which is divided into two parts, one fixendependent of the expert system: the inference
engine, and one variable: the knowledge base. AN8| pre a mathematical model or computational
model that is inspired by the structure and/or fiomal aspects of biological neural networks. An
ANN consists of an interconnected group of ar@#figieurons, and it processes information using a
connectionist approach to computation. In mostc@aseANN is an adaptive system that changes its
structure based on external or internal informattaat flows through the network during the learning
phase. Modern neural networks are non-linear statislata modeling tools. They are usually used to
model complex relationships between inputs anduistpr to find patterns in data.

The application of these methods depends on their characteristics [4]. SM is mainly used in
energy modeling of clusters of buildings [9,10]ioithe design of areas where different end usexs ar
present. SP is mostly applied as energy estimabiols of single buildings [11], in design and rétro
interventions. ICS are somehow in between the t@ocabse can be applied to single as well as
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building clusters [12, 13], moreover ICS are veffeaive in diagnosis, automation, control and
management optimization.

Therefore, in this paper is described a novel I@Sehergy consumption modeling aimed at making
diagnosis systems and controlling a complex bujjdin

1.6.2 Methods

In this paragraph the modeling techniques compiarfite experimentation are shortly described.

Naive Model

In order to perform a meaningful comparison for fineecasting, a naive model should be introduced
in order to quantify the improvement given by marlligent and complex forecasting techniques.
For seasonal data a naive model might be defined as

Xt = Xt-s (1)
with S the appropriate seasonality period. This ehgilves a prediction at time t presenting the galu
observed exactly a period of S steps before. Herwhork, the value of S is 24 * 7 = 168 which
corresponds to a week, given that the samplingideresd is hourly.

1.6.3 Statistical Model

One the simplest and most widely used models ibuitd an average weekly distribution of the
consumption sampled hourly. Thus, from the dateefimh day the average consumption is computed
hour by hour in order to get an average distributiade of 24 * 7 = 168 points.

Artificial Neural Networks

Artificial Neural Networks (ANN) [7,8] are computahal models which try to simulate some
properties of biological neural networks in ordersblve complex modeling problems of non-linear
systems. An ANN is an interconnected group of iaiif neurons (called also nodes) that uses a
mathematical or computational model for informatfocessing based on a connectionistic approach
to computation. In more practical terms ANN are diorar data modeling or decision making tools
which can be used to model complex relationshipgs/den inputs and outputs or to find patterns in
data. ANN are referred also as black-box or daitzedr models and they are mainly used when
analytical or transparent models cannot be appBedding such models needs several stages as input
analysis and training through algorithms which miizie the error between the real values to be
modeled and the ANN output. ANN demonstrated teffiectiveness in modeling many real-world
applications.

Once modeling an ANN model, we must take into antdlree basic components. First, the synapses
of the biological neuron are modeled as weightd'sLiemember that the synapse of the biological
neuron is the one which interconnects the neutafar& and gives the strength of the connection. For
an artificial neuron, the weight is a number, aapresents the synapse. A negative weight reflects a
inhibitory connection, while positive values desfg excitatory connections. The following
components of the model represent the actual gctofi the neuron cell. All inputs are summed
altogether and modified by the weights. This attii$ referred as a linear combination. Finally, an
activation function controls the amplitude of thetput. Mathematically, this process is described in
Figure 2-57.
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Figure 2-57: Artificial neuron model

From this model the activity of the neuron can lheven to be:

y=fa(ZWixi - 6) 3)

whered is a threshold called BIAS (Basic Input ActivatiBgstem) which identifies the sensitivity of
the neuron to respond to the external inputs. Tleetrmommon function used to modehre the
hyperbolic tangent, the sigmoid and the linear fiomc

Therefore each unit performs a relatively simple jeeceive input from neighbors or external sources
and use this to compute an output signal whichrapggated to other units. Apart from this procegsin
a second task is the adjustment of the weights.sybem is inherently parallel in the sense thatyma
units can carry out their computations at the samme. Within neural systems it is useful to
distinguish three types of units: input units whielseive data from outside the neural network, wutp
units which send data out of the neural networld hidden units whose input and output signals
remain within the network.

The way units are connected defines the networklogyy or architecture. In the past years many of
them have been studied and the most widely usétkiseed-forward one. In this network structure
neurons are grouped into layers. There existsaat svo layers, the input and the output one, which
are those gathering the corresponding input anpubwriables. This basic structure is also known a
perceptron [14]. Moreover, in order to let the nloctgpe with non-linear problems, it is possible to
add one or more intermediate layers, known as hidagers. These models are also known as multi-
layer perceptrons (MLP)[15].

The flow of data from input to output units is stly in one direction (forward). The data procegsin
can extend over multiple (layers of) units, butf@@dback connections are present, that is, coramecti
extending from outputs of units to inputs of uimitshe same layer or previous layers.

Hidden

Input ™

Figure 2-58: Feed-forward neural network topology

A neural network has to be configured such thatapplication of a set of inputs produces (either
'direct’ or via a relaxation process) the desimtdo$ outputs. Various methods to set the strengths
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the connections exist but the most used way itram" the neural network by feeding it teaching
patterns and letting it change its weights accgrdinsome learning rule.

Several different training algorithms for feedforaianetworks use the gradient of the performance
function to determine how to iteratively adjust thieights to minimize performance. The gradient is
determined using a technique called backpropagafith 17], which involves performing
computations backward through the network. The Esipimplementation of backpropagation
learning updates the network weights and biasdkdndirection in which the performance function
decreases most rapidly, the negative of the gradare iteration of this algorithm can be written:

Ko = % =01,
+1 k axk
, . . OE, . . .
where X, is a vector of current weights and biases;* is the current gradient, is the current error

0X,
between the network outputs and the target outpansly is the learning rate.
There are two different ways in which this gradietgscent algorithm can be implemented:
incremental mode and batch mode. In incrementalemibe gradient is computed and the weights are
updated after each input is applied to the netwbrkbatch mode, all the inputs are applied to the
network before the weights are updated.
The backpropagation training algorithms are oftem glow for practical problems. The Levenberg —
Marquardt is a high — performance algorithm that canverge from ten to one hundred times faster
than the backpropagation algorithm discussed pusifo The Levenberg — Marquardt algorithm [18,
19] is an approximation to Newton’s method: it vd@signed to approach second-order training speed
without having to compute the Hessian matrix. Wttenperformance function has the form of a sum
of squares (as is typical in training feedforwardtworks), then the Hessian matrix can be
approximated as:
H=J"J
and the gradient can be computed as:
JTE,
whereJ is the Jacobian matrix that contains first deriwedi of the network errors with respect to the
weights and biases, abgis a vector of network errors. The Jacobian mataix be computed through
a standard backpropagation technique that is megdh domplex than computing the Hessian matrix.
The Levenberg-Marquardt algorithm uses this appnation to the Hessian matrix in the following
Newton-like update:

_ T Ry
X =%~ I I+ul] JE
When the scalar is zero, this is just Newton’s method, using thpraximate Hessian matrix. When
u is large, this becomes gradient descent with dlstep size. Newton’s method is faster and more
accurate near an error minimum, so the aim is ift tetvard Newton’s method as quickly as possible.
Thus, u is decreased after each successful step (reductiparformance function) and is increased

only when a tentative step would increase the pmdoce function. In this way, the performance
function is always reduced at each iteration ofalgerithm.

Ensembling Methods

The term ‘ensemble’ describes a group of learnimghimes that work together on the same task, in
the case of ANN they are trained on some datatagether and their outputs are combined as a single
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one. The goal is obtain better predictive perforoegnthan performances that could be obtained from
any of the constituent models.

Figure 2-59: Ensembling

In the last years several ensembling methods heee barried out [20, 21, 22[he ensemblemethods
can be dividednto two categoriesgenerativeand nongenerative

The nongenerative methodseek tocombinein the best wayhe outputs of thenachines The first one, also
known as Basic Ensemble Method (BEM), is the sisipleay to combinéM neural networks as an
arithmetic mean of their outpugs This method can improve the global performan@ 2] although

it does not takes into account that some modeldeanore accurate than others. This method has the
advantage to be very easy to apply. A direct BENe®msion is the Generalised Ensemble Method
(GEM) [23, 24] in which the outputs of the singl@aels are combined in a weighted average where
the weights have to be properly set, sometimes aftexpensive tuning process.

The generativenethodsspawn newsets oflearner from the original oneo as tocreatedifferences
between themthat can improvethe overall performance. For example, Bagging ardhb®ost
generative methods use the bootstrapping resamigcimique [25] that allows to generate different
sets for machines training. In Baggirgoptstrap AGGregatING) [26]hé bootstrappingechnique
on a database consiststhe extractionwith replacemenbf its elementsto createseveralnew
training set. The probabilitpf extraction ofeach exampleés equal to thabf the other The basic
algorithm consists in creatingnodels for each training setand thenin combining thevarious
estimates on theest setthrough an average operation (Figure 2-60). TheenAotaboost [27, 28]
derivesfrom the factthat theensembleprovidesthe bootstrapadaptive it possesses the ability to
adaptto the difficulty characteristics of theaining setThe central ideds to extracta randormumber

of exampledrom thetraining setthen assigra higher probabilityf extractionfor the examples more
difficult to learn. Initially, a first machineis trainedwith a training setconstructed byrandom
selectionwith equal probabilityfor all examplesAfter that, theextraction probabilities are updated
for the next training set bincreasingprobability of the original setworst learnedexamples.It
generates newtraining setanda new machine is trained angb on

c
- an

—{ & ~a—

Figure 2-60: Bagging algorithm block diagram
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1.6.4  Experimentation

In this paragraph the methods presented in théquesection are tested and compared.

The test case has concerned the energy consumpboleling of a real office building (building
‘C59’) located in the ENEA ‘Casaccia’ Research CerfRome, Italy)Modeling refers to threenergy
consumption types of the buildinighting, electromotive force (emf) and conditingi Experimentation
has been carried out over three different dataeset) one made approximately of 3 months of hourly
measurement (from September to November 2009dhtitig and emf, from June to August 2009 for
conditioning). Each sample consists of measurenlietsnonth, day of the month (1-31), day of the
week (1-7), time, working day (true/false), occupansolar radiation, outdoor temperature, sunset
time, used as inputs of the neural models, anduropson, used as the target (output).

The data sets have been split in two parts : trginfapproximately 10 weeks) and validation
(approximately 3 weeks, one for each month) anddperted results refer to the last one.

The ANN applied for the data analysis are feed-BodvMLP with several inputs dependent on the
particular type of consumption (Tab. 15), 1 hiddeyer consisting of 10 neurons, 1 output (lighting,
emf or conditioning consumption), hyperbolic tanigaa activation function for the hidden neurons
and linear for the output. The artificial neuratwmerks ensembling is built according to BEM.

Table 2-11: Best input combinations for each consion type

NUMBER OF INPUTS INPUT VARIABLES
Month, day of month, day of the week, time, occ lobal
LIGHTING 7 . y. Y . “Dag
radiation, outdoor temperature (working days only)
Month, day of month, day of the week, time, workday,
EMF 11 occupancy, global radiation, diffuse radiationedtirradiation,
outdoor temperature, sunset time
Month, day of month, day of the week, time, occ lobal
CONDITIONING 9 _ y . Y . . Das
radiation, diffuse radiation, direct radiation, do®r temperature

Training has been performed with MATLAB (ver. R2@)0through the Levenberg-Marquardt
algorithm stopping after 1000 iterations. The régdresults are averaged over 10 different rung(wi
standard deviation in brackets) and the ensemiblerefore made by the same 10 models.
Performance has been measured according to the Kesmlute Error (MAE) and the Maximum
Absolute Error (MAX) (Tab. 16):

Sy
MAE=—) |y - Y
= )6

N
(6)
wherey; is the real outputy is the estimated output ahtlis the data set real values size.

MAX =max{| y - y[}

Table 2-12: Experimental results (testing).

Naive Statistical ANN BEM
MAE (kW) 2.95 0.97 1.22 (+0.10) 0.95
LIGHTING
MAX (kW) 4.90 4.74 5.53 4.02
EME MAE (kW) 1.51 1.38 1.01 (+0.21) 0.68
MAX (kW) 12.40 7.50 8.15 4.49
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MAE (kW) 4.76 4.06 3.45 (+0.34)

2.95

CONDITIONING

MAX (KW) 14.84 13.00 15.55

8.69

Experimental results show that lighting and emfstonptions are more easily modeled than the
conditioning one (Figure 2-61, 2-62, 2-63): forstieinergy consumption type, further data, in addlitio

to those available, are necessary (i.e., buildibgrnal temperature).

We can see that the proposed method (BEM) cleatiyesforms all the others. The reason for that is
that the proposed approach is capable to proviibke estimations when out of standard conditions
because it takes into account several input fest{es occupancy) which affect the energy

consumptions.

Moreover, it is interesting to point out that sdtitial modeling performs pretty well, even betteart
the single neural models (ANN). These get a rentdekaccuracy, and an error slightly lower than the

statistical model, only as an ensemble.

The accuracy achieved by the proposed model is thatht can be applied for intelligent monitoring,

diagnostic systems and optimal control in ordeetiuce energy consumptions.
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Figure 2-61: Lighting modeling comparison (testiagults).
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Figure 2-62: Emf modeling comparison (testing resul
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Figure 2-63: Conditioning modeling comparison (begtresults).

1.6.5 Conclusions

In this work we proposed a new approach aimed atetimg building lighting, emf and conditioning
energy consumptions. The basic idea is to builéwa model based on neural networks ensembling.
Experimentation has been carried out over threetimsotiata sets coming from a real office building
located in the ENEA ‘Casaccia’ Research Centre expkrimental results show that the proposed
method can get a remarkable improvement with redpdabe best classical method.
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The reason for that is that the neural ensembliadeahis capable to provide reliable estimationsnwhe
out of standard conditions because it takes intm@aat several input features (as occupancy) which
affect the energy consumptions.

The accuracy of the proposed model is such tlwainitbe applied for intelligent monitoring, diagnost
systems and optimal control in order to reducegneonsumptions.

As future work we are going to apply the same apgindo model other building energy consumptions
as thermal flows. Moreover, we are going to trylgimg more sophisticated ensembling methods and
also try neural - statistical hybrid models.
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1.7 Experience 6: Office Buildings of municipality of Livorno Ferraris

(Vincenzo Corrado et al. — Polytechnic of Turin )

1.7.1  Subject of the work

The subject of work is the analysis of the energg anvironmental performance of a small office
building in Italy, having a gross floor area of DI and a net floor area of 75Fmiccording to the
Italian Building Energy Code the building is locaia the climatic zone “E” (HDD between 2100 and
3000).

1.7.2 Aim of the work

In order to improve the energy efficiency in exigtbuildings and to design appropriate energy-gavin
measures, it is important to split the effect & building features (envelope, energy systems)tlaad
effect of the human behavior factors (heating/\latitig, system control).

The work is based on a survey on users behavioradong-term energy and environmental
monitoring, on the application of inverse modelsdzhon linear regression and on the run of a tllor
numerical simulations.

1.7.3 Database characteristics

The following building features are fully described

» geometry (surfaces, orientation, external context);

» envelope (layers, material properties, windows);

* building services typologies and efficiencies (DHWpace heating, ventilation, lighting,

common appliances).

Occupancy schedules and equipment use are fullgrided. The boiler energy supply has been
continuously monitored on a two-year period by nseaf a direct method (supply and return
temperatures, and water flow rate). Also an indineethod has been used to evaluate water flow.rates
The following indoor and outdoor environmental gtitées were also monitored (with a 15 minutes
time step):

e air temperature;

e air relative humidity;

» CO2 concentration.
The building has been simulated through a numesalulation code (EnergyPlus), using the real
occupancy schedules and real environmental prqfdélered energy rating).

1.7.4  Building data

The case study is public office “Palazzo Cioccaiijtin 1860, situated in Livorno Ferraris (VC)aly.
Livorno Ferraris is a town located in North-Westdialy in Piedmont region. the number of degree
days is 2549 °@.

The building floor has an area of 13¢ mith a ceiling height of 3.5 m. The simulation ati
monitoring were performed at the second floor.

The building structure is in bearing solid bricksoary. On the floor below the monitored zone are
heated rooms (through autonomous heating systemsjlao used for offices and similar, while locals
on the upper floor are used for archives and usé&dating system is generally off.

138



Figure 2-64: Satellite view

Figure 2-65: Palazza€ta — portion subject

to monitoring
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Figure 2-66: Plan of the 2nd floor above ground

The thermo physical properties of building enveltggers are presented in Table 2-13. The glazed
building facade represents 20% of the total envelm@a. Windows are 4/6/4 uncoated and air filled
with an U-value of 3.15 W/(fiX) and a SHGC of 0.74. Windows are shaded fromidetby blinds
with reflectance (0.2) and transmittance (0.7).
Table 2-13: Envelope compositions and thermo phygiroperties of materials

Layers (outer/inner) Thickness Density Specific heat Thermal
(cm) (kg/m®) (I/kg.K) conductivity
(W/m.K)
External wall Brick 72 1800 840 0.72
Ceiling/floor Flooring screed 5 1200 1000 0.41
Brick 20 1700 840 0.56
Concrete 20 2000 1000 1.13
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Heating system
The heating system is centralized type equippetl witast iron heat generator of which the main
characteristics are provided below:

» Type: non-condensing

* Rated power at firebox: 33,72 kW

e Output power: 29,09 kW

» Efficiency at full power at firebox: 91%

* Feed: natural gas

* Burner: atmospheric

* Year of installation: 1992

» Condition: Intact insulation coat.
The heating distribution system is zone type (flooltector) and the pipes are embedded in the floor
The circulation pump has the following features:

Table 2-14: Heating system features

220V

Power supply 0.66/0.5 A
P1 (max) 132/99 W
P2 (min) 49/22 W

Gir 2000/2400 rit

A programmable control (timer) is installed (Figu2e57) and a zone thermostat (Figure 2-68) is
placed in room 9, closet o the “I" measurement poin

Figure 2-67: Timer Figure 2-68: Zone thermostat

The terminals are cast iron radiators in columrithe radiators except i, m, p, q and r are cesiti
below window sills. In Figure 2-69 the positiontbé radiators id identified.
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Figure 2-69: Position of the radiators

Table 2-15: Characteristics of the radiators in tm@nitored rooms

Height
Id Elements Columns
[mm]
a 12 4 600
b 10 4 600
c 6 4 600
d 14 4 600
e 8 4 600
f 8 4 600
g 10 4 600
h 10 4 600
i 3 3 840
| 7 4 600
m 3 840
n 13 4 600
0 13 4 600
p 10 3 840
q 10 3 840
r 4 3 840
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Building use

The building office is occupied from 9 to 18 h digriweekdays. The internal heat sources are 15
W/m? and the infiltration is fixed to 0.7’h A natural ventilation rate is scheduled with anial rate

of 3 h'. The shading device is scheduled with a solapsgtt of 120 W/m.

Monitoring
The following quantities were monitored:
» external temperature
» external relative humidity
« external CQconcentration
* internal temperature
* internal relative humidity
* internal CQ concentration
» thermal energy delivered to the system

The environmental monitoring has been carried atit by means of wireless sensors and by means
of traditional data-loggers.
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Figure 2-70: Identification of the rooms

Hereafter are reported, for each room, the geooattiéatures, the occupancy schedule and the type
of climatic control.

Table 2-16: Occupancy characteristics of the mapilaooms
[ Room | Occupancy schedule |  Equipment | Notes
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1 person from Monday

1 to Friday — time 8-14 1Prci:r;ter
and 15-18 P
2 persons f“’m Monda 2 PCs, The doors of separation of room 2 from room 3 jare
2 to Friday — time 814 , . ors open for most of the occupancy period
and 15-18 P P pancy p
. . . The doors of separation of room 2 from room 3 fare
3 Occasionally occupied 2 printers .
open for most of the occupancy period
. . . The doors of separation of room 4 from room 9 jare
4 Occasionally occupied No equipment .
open for most of the occupancy period
2 persons from Monda:
5 to Friday — time 8-14 gpr(i:ns?ers
and 15-18 P
1 small refrigerator,
1 microwave oven,
1 automatic ba
6 See notes mach|n<_e, . Bathrooms and service room
1 distributor of
beverages,
1 boiler for DHW
production
1 person from Monday
7 to Friday — time 8-14 gprci:nst’ers
and 15-18 P
8 Occasionally occupied No equipment

1.7.5 Method/Methods applied for the data analysis

The method for data analysis includes two steps:

» simplified analysis based on a simplified inversadel;

» calibration of the numerical detailed model.
The first step applies linear regression based eekly and daily data for determining correlations
between heating energy need and average extempktature. Such regression allows to determine
the total heat loss coefficient and the influenteatar and internal heat gains.
By knowing solar radiation data and occupancy salesd it is also possible to split the effects abs
gains and internal gains.
Besides, the analysis of internal temperature dho@ to thermostat set-back or switch-off of the
heating plant allows to determine the effectiveriied capacity of the building.
In the second step the numerical model has bedrrata@d by comparing both expected energy need
and the real measured consumption, and the expecikdeal aggregated parameters springing up
from the first analysis.
The aim is to built a data-driven model and to eatd energy saving. The construction of inverse
models is based on the following assumptions:

» Dependent variables: energy consumption for heatimdycooling, obtained with the detailed

simulation tool EnergyPlus;
* Independent variables: external air temperaturesahdir temperature.

The procedure of inverse model construction is hasethe least-squares regression method (Kissock
et al. 2003). This approach estimates model coeffis,3, that minimize the sum of the squared error,
E, between predictecf',, and actual observations, Y, following this eqoiati

Y=X-B+E 1)

The root mean squared error, RMSE, is to be mizediicomputed as:
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RMSE= M 2)
(n-p)

wheren is the number of data observatiopss the number of regression coefficients. The mean
squared error of the model is a measure of théesaaftthe data around the model.
The second task is to evaluate the energy savoilgsving the realization of several retrofit act®on
In the case-study, data driven approach is cawigdwith simulated data because as measurement
operation is still on progress.
The method is based on the following steps:

» Assessment of energy consumption for heating awtingpin day time intervals during the

pre and post retrofit periods using the dynami¢ EowrgyPlus;
e Construction of data-driven models;
e Calculation of the energy saving for each retradition.

Simulation

The energy evaluation of the building is carried with EnergyPlus dynamic tool for six different
combinations of climate data and building data attaristics: (i) pre-retrofit simulation performed
with climate and building data in the pre-retr@fériod (ii-v) post-retrofit simulations with climatand
building data in the post-retrofit period and (fi)al simulation with post-retrofit climate datadn
pre-retrofit building data. The pre and post-rétralimatic data have been modelled with two
different cities in the same climatic zone.

Table 2-17: Description of Retrofitting actions

Retrofitting actions Energy aspect Load characiion | Force driven

Infiltration reduction

9 Heat ventilation losses Instantaneous load Exteemaperature
Qpre-relro: 0.7h
onst-retro: 0.2 h
Decreasing window solar
transmittance
Heat sources Delay load Solar irradiation

SHGGyre-retro= 0.74
SHC':‘C';Jost-retro= 0.39

Adding external envelope insulation
External temperature and

Heat transmission losses Delay load . L
solar irradiation

Uogare-retro: 0.89 W/I'ﬁK
Uoppost-retro: 0.28 W/niK

Double window with argon gas filling

L Quasi-instantaneous
Heat transmission losses
UWyre retro = 3.15 W/mMK load

UWpostretro= 2.55 W/MK

External temperature

1.7.6 Results

A better understanding of the building heat balasweé of the influence of users have been achieved
by combining an inverse analysis based on energyeavironmental monitoring and a calibrated
direct tailored modeling.
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A few aggregated parameters have been definedstride the building thermal behavior: global heat
transfer coefficient, thermal capacity, solar dffecarea, user parameters.

Table 2-18 shows the regressions coefficients amgkbntainty parameters of the data driven model
using the (2-P), (3-P), (4-P) and (5-P) modelglierheating and cooling mode and respectively using
sol-air temperature and air temperature as indepgndariables. Generally speaking, the squared
correlation coefficient,R, has a good value (more than 0.6). It can be nthed the dry air
temperature is more appropriate than the sol-aipézature in the case of cooling data driven model.
At the opposite, the sol-air temperature is morigble during the heating mode. Besides, table IV
illustrates that the balance temperatugg fas a low value: in the heating mode around 12.&r7d in

the cooling mode around 20°C, this is due to the fae conditioning system runs in intermittent
mode.

Table 2-18: Uncertainty parameters and regressioefficients for models analyzed
Independent Model Uncertainty Parameters Regression coefficients
variable
R | RMSE | CV-RMSE|— 2 s da | s
[kwh] [kwh/°C] [°C] | [kWh]
© = 2P |0.646 10.839 | 42.71% |-167.88 4.15
= § 3PC |0.648 10.809 | 42.60% | 3.32 4.30 23.76 [°C]
g © 4P |0.657| 10.758 | 42.39% | 34.01 4.89 2.39 [kWh/°C] |30.14
5 = 2P | 0.678 16.201 | 32.83% | 160.64 -4.40
'c_?s ‘53 3PH |0.701] 15.592 | 31.60% | 6.53 -5.15 15.56 [°C]
? T 4P | 0.702 15.65 31.72% | 14.27 -5.31 -1.33 [kWh/°C]|13.78
5P | 0.744 4.061 34.60% | 4.76 -5.31 3.87 [kWh/°C]|15.56 23.33
g = 2P |0.784 8.473 | 33.39% [-224.41 6.29
< S 3PC |0.829 7.537 | 29.71% | 5.09 7.88 19.71 [°C]
qéi © 4P | 0.83| 7.566 | 29.82% | 6.72 1.07 7.87 [kWh/°C] |19.91
ﬁ 2 2P | 0.634 17.263 | 34.99% | 173.73 -5.44
Fi © 3PH |0.642 17.067 | 34.59% | 5.71 -5.80 12.56 [°C]
Dé T 4P | 0.642 17.146 | 34.75% | 7.51 -5.81 -0.65 [KWh/°C]|12.22
5P |0.733 14.372 | 35.36% | 3.21 -5.79 7.19 [kWh/°C]|13.01 19.05

In figures 2-71, 2-72, 2-73 the building energy deéor heating and for cooling are presented as a
function of the driving forces T andas well as the fit by baseline equation for trgression model
analyzed.
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1.8 Experience 7. Evaluation of a Low Energy Multifamily building in Vienna, Austria
(Synthetic contribution)

(Thomas Bednar, Kerstin Seif, Naomi Morishita. WienUniversity of Technology)

1.8.1  Subject of the Work

Three Austrian apartment buildings (Kammelweg Dendiorfergasse, Dreherstral3e) studied at a high
level of detail, Level C, complex, according to tBd_evel Database” definition.

1.8.2 Aim of the Work

The aims of this research are:
* to determine an accurate profile of the currenicigipAustrian household considering direct
and indirect influences on user behavior and endegyand,;
» to verify if the profile of a single average houskhis satisfactorily accurate to represent the
energy-related behavior of the Austrian population;
* to see how energy-related user behavior has changedime;
» to establish what the most essential influencerarenergy-related user behavior.

1.8.3 Database Characteristics

Two groups of data are to be generated for thebdata building geometries and qualities and
occupancies and lifestyles.
The database contains the results of a regressialysis of key influencers of energy-related user
behaviors. The parameters representing the rangeosdible user behaviors are selected for the
database using the results of previous researchtl behavior trends, and five building energy
efficiency groups:

» Existing buildings

* Low Energy buildings

» Low Energy buildings with renewable energy systéR\é panels, solar hot water panels, etc.)

e Passive House buildings

* Plus Energy buildings

The case study apartment buildings located in iffeparts of Vienna are used as the basis for the
scenario combinations. The apartment buildingsaasdyzed in detail at Level C, complex.

The interplay of both groups of parameters are éoetbusing random regression analyses to form a
library of potential combinations of building stamd, occupancy, and lifestyle.

1.8.4  Data Analysis Methodology

The first group of data will be comprised of thelting performance characteristics of five building
efficiencies as listed above.

The second group of data will be based upon tleealiire research, where parameters influencing
energy-related behaviors will be identified and-sabegorized. The dominant occupancy schedules
will also be included in this portion of the databa
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The two data groups will be combined using regogssinalysis to establish a series of user profiles,
and compared to determine if a dominant profileltes

The dominant parameters, as determined by the sgigre analyses, will then be used as the input
parameters for whole building simulation modelshaf apartment buildings.

1.8.5 Expected Results

The dominant characteristics of energy-related hebavior will be graphically compared to ascertain
if a single profile dominates each building typolodf a consistent profile dominates all typologies
this profile can be defined as an accurate usdilgfor the typical Austrian household to be used
the standard profile for energy certificate caltiolas and whole building simulations.

149



1.9 Experience 8: Development of statistical analysisof total energy use in individual
buildings (Synthetic contribution)

(Thomas Bednar, Kerstin Seif, Naomi Morishita. WienUniversity of Technology)

1.9.1  Subject of the Work

Eight Austrian single family homes between 100 n@ 3220 m? studied at a high level of detail, Level
C, complex, according to the “3 Level Databaselrdgén.

1.9.2 Aim of the Work

The aims of this research are,

to determine an accurate profile of the currenicglpAustrian household considering direct and
indirect influences on user behavior and energyatem

to verify if the profile of a single average houslkehis satisfactorily accurate to represent thegne
related behavior of the Austrian population;

to see how energy-related user behavior has changedime;

to establish what the most essential influencezarenergy-related user behavior.

1.9.3 Database Characteristics

Two groups of data are to be generated for thebdata
» building geometries and qualities
» occupancies and lifestyles.

The database contains the results of a regressialysis of key influencers of energy-related user
behaviours. The parameters representing the rahg®essible user behaviors are selected for the
database using the results of previous researchtlm behavior trends, and five building energy
efficiency groups:

» Existing buildings

* Low Energy buildings

» Low Energy buildings with renewable energy systéR\é panels, solar hot water panels, etc.)

» Passive House buildings

* Plus Energy buildings

Eight case study single family homes located ifed#nt parts of Austria are used as the basishir t
scenario combinations. The homes are analyzedt#il déLevel C, complex.

The interplay of both groups of parameters are é¢oatbusing random regression analyses to form a
library of potential combinations of building stamd, occupancy, and lifestyle.

1.9.4  Data Analysis Methodology

The first group of data will be comprised of thdltng performance characteristics of five building
efficiencies as listed above.
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The second group of data will be based upon tleealiire research, where parameters influencing
energy-related behaviors will be identified and-sategorized. The dominant occupancy schedules
will also be included in this portion of the databa

The two data groups will be combined using regogssinalysis to establish a series of user profiles,
and compared to determine if a dominant profileltes

The dominant parameters, as determined by the sgigre analyses, will then be used as the input
parameters for whole building simulation modelshaf eight homes.

1.9.5 Expected Results

The dominant characteristics of energy-related hebavior will be graphically compared to ascertain
if a single profile dominates each building constian typology. If a consistent profile dominatds a
typologies, this profile can be defined as an aateunser profile for the typical Austrian househiald
be used as the standard profile for energy ceatdicalculations and whole building simulations.
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1.10 Experience 9: Development of statistical analysisof total energy use in small office
buildings (Synthetic contribution)

(Thomas Bednar, Kerstin Seif, Naomi Morishita. WienUniversity of Technology)

1.10.1 Subject of the Work

Two small Austrian office buildings (GetreidemarBtl Melk) studied at a high level of detail, Level
C, complex, according to the “3 Level Databaseirdgén.

1.10.2 Aim of the Work

The aims of this research are,

to determine an accurate profile of the currentcgipAustrian office worker considering direct and
indirect influences on user behavior and energyahemn

to verify if the profile of a single average office satisfactorily accurate to represent the energy
related behavior of the Austrian population;

to see how energy-related user behavior has changedime;

to establish what the most essential influencezarenergy-related user behavior.

1.10.3 Database Characteristics

Two groups of data are to be generated for thebdata building geometries and qualities and users
and lifestyles.

The database contains the results of a regressialysis of key influencers of energy-related user
behaviours. The parameters representing the rahg®ssible user behaviors are selected for the
database using the results of previous researchtl behavior trends, and five building energy
efficiency groups:

» Existing buildings

* Low Energy buildings

» Low Energy buildings with renewable energy systéR\é panels, solar hot water panels, etc.)

e Passive House buildings

* Plus Energy buildings

Two case study office buildings located in diffargrarts of Austria are used as the basis for the
scenario combinations. The buildings are analysetetail at Level C, complex.
The interplay of both groups of parameters are éoetbusing random regression analyses to form a
library of potential combinations of building stamd, occupancy, and lifestyle.

1.10.4 Data Analysis Methodology

The first group of data will be comprised of thelting performance characteristics of five building
efficiencies as listed above.

The second group of data will be based upon tleealiire research, where parameters influencing
energy-related behaviours will be identified ant-sategorized. The dominant occupancy schedules
will also be included in this portion of the databa
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The two data groups will be combined using regogssinalysis to establish a series of user profiles,
and compared to determine if a dominant profileltes

The dominant parameters, as determined by the sgigre analyses, will then be used as the input
parameters for whole building simulation models.

1.10.5 Expected Results

The dominant characteristics of energy-related bhebavior will be graphically compared to ascertain
if a single profile dominates each building typolodf a consistent profile dominates all typologies
this profile can be defined as an accurate usdiig@for the typical Austrian office building to hesed

as the standard profile for energy certificate wlaitons and whole building simulations.
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2. Statistical analysis of large building stock

2.1 Introduction

Statistical analysis of a large buildings stock respnt methods used to estimate the energy
consumption and/or the peak demand of a building &vel of detail that is suited to apply to a
number of buildings that is statistical significdnsually more than tens of buildings). The pritheipf

the approach is to project the experimental data basis. The methods depend on the type of basis:
its dimension and its components.

One type of projection is on categories (Experisnte2, 3, 4, 5, 6). For example, Hu and Yoshino
(Experience 4) consider the climate zones, the a@frélae building, the type of the heating systerd an
its operation, as well as the number of peoplenatiousehold and their annual income. In another
study, Yoshino (Experience 5) considers, besidhes dategories mentioned before, the weather,
indicated by the cooling and heating degree dagsthe indoor temperature during the heating and
the cooling season. The model resultes are regressodels in different variants: multi regression,
neural networks, quantification methods (Experisnte2, 5).

Categorizing reduces the variance of the predictsdlts. The physical explanation of the result is
embedded in the categories. Usually, these appesadb not differentiate between the inputs (e.g.
weather), the parameters (e.g. floor area, totat hess coefficient) and the outputs (e.g. inddor a
temperature) of a physical (or direct) model. Tésuits indicate the influence of each categoryrgive
by the weighting coefficient in the model.

This kind of approach, which uses less data (ihtfae data available), is very effective in praetitt
allows the prediction of energy consumption withexpected variance for real buildings by using
data which are available mainly on monthly andfurual bills.

Comparison between categories needs a criteriochwhiiormalizes” the consumption in order to
negate the effect of parameters specific to a gingltling. For example, Corgnati et al. (Experienc
6) propose and demonstrate the application of dicator that normalizes the data as a functiormef t
heated volume and the climate, described by theedednys of the site.

The second class of projection is on parametephg$ical models. The main idea in this approach is
to consider a physical model based on heat balandédo identify the parameters of this model which
increase the fit between the predicted results #wed measurements. One of the most common
approaches is to use the load curve, which expeidse dependence of the heating (or cooling)
consumption on the outdoor temperature. This “tlaérsignature” of the building can be used
together with the distribution of degree-days ogrde-hours in order to estimate the energy
consumption (e.g. the bin method). Basically, thiéding signature is obtained by regression. Robust
regression may be used to improve the predictionase of perturbation such as the usage of the
building (Experience 7). The advantage of thisrapph is that the thermal behavior of the building,
the comfort and the climate are decoupled.

A variant of this method is to use the free-runniamperature, which allows the estimation of the
energy savings for cooling by using free-coolingvieytilation (Experience 8).

Refinements of the thermal signature or the loadveeunethod are proposed (Experiences 8, 9).
Ghiaus (Experience 8) demonstrated the equivaleerteeen the load curve and the free running
temperature. By using the free-running temperatire , whole range of building operation (heating,
ventilation and cooling) is described by a singlaaept.

Normally, thermal signature is a static method. ldeer, the heat balance may be written taking in
account the accumulation. By doing so, Danov etEdperience 7) obtained a dynamic model which
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can estimate the influence of the thermal mask@btiilding on the energy consumption. Solar gains
may be also included in the thermal signature, cigdu the variance of the energy estimation
(Experience 7).

References (contributions to the Annex 53)

Extended contribution

Experience 1: Sawako Nakamura, Hiroshi Yoshino, kbyMiura. Statistical analysis for energy
consumption of office buildings in Japan

Experience 2: Sawako Nakamura, Hiroshi Yoshino, kbydiura. Statistical analysis for energy
consumption in residential buildings in Sendai

Experience 3: Hiroshi Yoshino, Ayako Miura. Survafythe peak electricity in residential buildings
(see Experience 1 in Individual Buildings for disia

Experience 4: Tianchi Hu, Hiroshi Yoshino. Stagiatianalysis on energy consumption of residential
buildings in China

Experience 5: Hiroshi Yoshino. Field Survey andiStigal Analyses on Energy Consumptions in the
Residential Buildings in Japan

Experience 6: Stefano Paolo Corgnati, Federica ulloa Marco Filippi. Heating consumption
assessment and forecast of existing buildings:sitiyation on Italian school buildings

Experience 7: Stoyan Danov, Jordi Carbonell, J8rgriano. Building energy performance evaluation
using daily consumption data

Synthetic contributions

Experience 8: Cristian Ghiaus. Experimental esiionabf building energy performance by robust

regression

Experience 9: Cristian Ghiaus. Equivalence betwberload curve and the free-running temperature
in energy estimating methods

Experience 10: Zhun Yu, Fariborz Haghighat. Minldglden Patterns from Real Measured Data to
Improve Building Energy Performance
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2.2 Experience 1. Statistical analysis for energy consaption of office buildings in Japan

(Sawako Nakamura, Hiroshi Yoshino, Ayako Miura)

2.2.1 Introduction

A detailed database is important for an effectiveasure to reduce GQCemissions from non-
residential building sector. Therefore, a natiomgbe project DECC (Data-base for Energy
Consumption of Commercial Buildings) was founded 2@07. The goal of the project was to
understand the actual conditions for energy consiommf non-residential buildings in Japan. This
report is authored corresponding to Reference[1].

2.2.2  Aim of the analysis

Goals of the survey are:

Understanding basic information and introductiorioérgy-saving measures of buildings
Understanding the average energy consumption peofutoor area by building usage.

In order to identify the influential factor on tle@mergy consumption, the multiple regression anslysi
was done.

2.2.3 Database characteristics

Number of buildings: 1128 office buildings(distriled in 8 different districts)

Period: April 1st, 2007 to March 31st, 2008

Questionnaire survey

Contents: Building information including locatiofipor area, annual energy consumption data, and
energy saving measures.

Online database: unavailable

2.2.4 Research method

Questionnaire survey

Questionnaire survey was carried out in office dinis located in eight districts in Japan. The surv
was conducted from April 1st, 2007 to March 31§02 The questionnaire sheets ware sent to the
building owners or building managements. Investigatcontents are shown in Table 2-19.
Questionnaire has 2 parts: building characteriatid energy consumption. Figure 2-74 shows the
number of the valid data by district. We obtain@@8 valid data in Japan.

156



Table 19: Investigation contents

Location,floor area,building area,parking areagstmompleted

Building characteristic . o :
g year,office hours,airconditioning period, etc...

Annual/monthly consumptions for electricity, citysgaP G(Liquefied
Energy Consumption |Petroleum Gas),heavy oil,kerosene, DHC (District iHgatnd
Cooling) and others

Hokushinetu 41 __/Hokkaido

Kansai n 30
170 3 \_Tohoku
. 185
Chugoku/Shikoku
147 Kanto

Kyusyu

131
3 Figure 74: Valid data

2.25 Results

Building information

Figure 2-75 shows building scales. In Kanto, lasgale buildings (more than 10008)raccounted for
about 60%, since there were lots of high-rise lingld in Tokyo area. On the other hand, in Tohoku
and Chugoku/Shikoku, percentage of small scaledimgis (up to 2000 fy was high. Figure 2-76
explains combination of energy sources. The contieinaof electricity and city gas were the most
common energy source in Japan. While in Hokkaidb Bohoku, the percentage of buildings using oil
such as kerosene, heavy oil were relatively hidie feasonable explanation could be that they have
long and cold winters, so oil was more practicavéoused.

m~1,000m" [ 1,000~2,000m" m 2,000~3,000rT 3,000~6,000m"
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Kyushu ] AT H

Figure 75: Building scales
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Figure 2-76: Energy source

Operation of heating and cooling

Figure 2-77 illustrates the cooling period. In Haldo and Tohoku, cooling period were shorter than
the others. Some of the buildings in other regiaese using cooling systems throughout the whole
year. In Kanto, cooling period was the longest, Kamto is not located in southern part in Japare Th
explanation could be that there are many largeesébaiildings with many workers and office
equipment such as computers and photocopiers,adahb office temperature tends to rise due to
internal heat gain. Figure 2-78 shows heating peobeach region. Generally in Japan most of the
buildings used heating system from December to Ma#eating periods of the buildings in Hokkaido
were the longest which is from November to April.

W59 60789 m90~119 120~149 0150~179 | 180~
0% 20% 40% 60% 80% 100%
Total AN
Hokkaido [Li..] S :
Tohoku UMY [
Hokushinetu [ - .y !
Kanto [JEERSREEERY
Chubu [ S
Kansai SN
Chugoku * Shikoku [ .
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Figure 2-77: Cooling period
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Figure 2-78: Heating period

Energy consumption

Figure 2-79 shows the relations between annual gssinenergy consumption and floor area. The
correlation between energy consumption and floeaavas strong. Figure 2-80 shows annual energy
consumption per square meter by region. The avesb@mergy consumption per square meter was
1738[MJ/ mi]. In Kanto, annual primary energy consumption gguare meter was higher than the
others. On the other hand, in Tohoku and Hokushjnetvas lower.
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Figure 80: Annual energy consumption per squaresmet

Multiple regression analysis

In order to understand the influential factors whidetermine the energy consumption, multiple
regression analysis was carried out by SPSS gtati8t In this analysis, backward selection method
was used. By using this method, influential factesigh low impact were removed. Annual total
energy consumption and annual energy consumptiornsqueare meter were set as the dependent
variable. Some factors such as floor area, complg®ars, cooling period, heating period were
selected as independent variables. To avoid mllitiearity, storey and cooling degree day were not
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used. Table 2-20 shows result of multiple regressinalysis for total energy consumption. The
coefficient of determination was 0.843. Coolingipér density of users, weekly business hours and
completed years were removed by backward seleatiethod. The standardized partial coefficient of
floor area was 0.901. For total energy consumpfiooy area was the largest impact factor. Table 2-
21 shows the result of multiple regression analy@isenergy consumption per square meter. The
coefficient of determination was 0.255. Completeghrg and heating period were removed by
backward selection method. Cooling period (0.264)sity of users (0.194), floor area (0.143) were
relatively high in standardized partial regressawefficient. These factors have certain effect on
energy consumption per square meter. If you lookesting degree day, you can find the partial
regression coefficient have a minus sign. It metlrad energy consumption in building which is

located in region with cold winter is smaller ththat in other regions.

Table 2-20: Result of multiple regression analysrstotal energy consumption

. . |Standardized
. . Partial regressiop . .
Independent variables |  Unit " partial regressionP-value
coefficient -
coefficien

Floor are: m 2.38¢ 0.90] 0.00(
Heating perio days/yea 154.19( 0.07: 0.00c¢
Heating degree d: °C-day -5.74: -0.04: 0.00¢
Cooling periot days/yea - - -

Density of uset person/r’ - - -

Weekly business hot _[hours/wee - - -
Completed yea Yeal - - -
Constar - -15532.66 0.001

Table 2-21: Result of multiple regression analysrsenergy consumption per square meter

Partial ._|Standardized
Independent variables |  Unit ar |§ _regressm 1partial regressionP-value

coefficient -

coefficien

Cooling periot dayslyes 2.78¢ 0.26¢ 0.00¢
Density of usel person/r’ 6631.33! 0.19¢ 0.00c¢
Floor are: m’ 0.00¢ 0.14¢ 0.00¢
Weekly business hot __|hours/wee 3.28( 0.11¢ 0.00¢
Heating dearee di °‘C-day -0.08% -0.06¢ 0.04:
Completed vea Yeal - - -
Heating perio days/yes - - -
Constar - 914.07: 0.00(¢

2.2.6 Conclusions

In this study, the outline of Data-base for Ene@pnsumption of Commercial Building was shown.
In order to understand the actual usage conditiaffize building, the investigation was held inGg)
where 1128 valid data were obtained. In Kanto, iogoperiod was longer than the others, because
there were many buildings with more internal heatf high density of workers in theffihe national
averages of the annual primary energy consumpt@nspuare meter was 1738[MJ/mYear]. In
Kanto, the average annual energy consumption pgaregmeter was higher than the other regions.
The explanation could be that there are many higghsuildings with many carrier devices and long
cooling period. On multiple regression analysis fotal energy consumption, the coefficient of
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determination was high, because total energy copsam and floor area have a strong linear
relationship. On the other hand, on multiple regjms analysis for energy consumption per square
meter, the coefficient of determination for was sothigh. However, cooling period, density of users
and floor area have some effects on energy consomper square meter. From the results, it's
important to reduce internal heat load for enegirg in office buildings.
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2.3 Experience 2: Statistical analysis for energy consaption of residential buildings in
Sendai

(Sawako Nakamura, Hiroshi Yoshino, Ayako Miura)

2.3.1 Introduction and aim of the analysis

The energy consumption of residential sector hasnbiacreasing significantly. Therefore, it is
necessary to analyze how much energy is used bipugarsources in order to reduce energy
consumption in residential buildings. In this studyestionnaire survey has been distributed tafglar
actual pattern of yearly energy consumption in @enflendai is one of the cities in Tohoku region.
Regarding climate condition, Sendai is cold andwsno winter, but is hot with high humidity in
summer.

Quantification method 1 was conducted based omehdts of the measurements, so as to find out the
influential factors on residential energy consuimpsiin Sendai city.

This report was authored corresponding to a papéfiR

2.3.2 Database characteristics

-Number of buildings: 1274 houses

-Period: October, 2007 to March, 2009

- Questionnaire survey

-Contents: number of household, floor area, enemysumptions, housing structure, lifestyles and
energy saving consciousness and so on.

-Online database: unavailable

2.3.3 Method

In order to understand the influential factors whaetermine the energy consumption, quantification
method 1 was carried out by SPSS statistic 18. ication method 1 analyzes qualitative factors.
Annual energy consumption for cooling, heating dmd water supply were set as the dependent
variable one by one. Some factors such as humbkowdehold, floor area, completed years, house
type, and occupant behavior were selected as indepé variables.

2.3.4 Results

Figure 2-81 shows the basic information of the lkebotds. In terms of house type, detached houses
accounted for about 57% of the total houses andrapat houses accounted for about 43%. As for
detached houses, wood construction accounted ft&0% of the total. As for apartment houses,
RC (reinforced concrete) was the most common coctsbn, which accounted for about 70%, on the
other hand, wood construction accounted for abd% bf the total. The average floor area of a
detached house was 131.1 amd that of an apartment house was 55.9Tine average of number of
family members was about 2.7 people.

Figure 2-82 shows the frequency distribution of ttweal energy consumption. The energy
consumption was converted by using the energy asiore value for each heat source, which are
Electricity:3.6MJ/kWh, City gas:45.0MJFr,n LPG:100.5MJ/my Kerosene:36.7MJ/l. The annual
average energy consumption was 40.8GJ/househdddthenstandard deviation was 27.7GJ. In this
investigation, since the response came from mangskof families and houses, energy consumption
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varied greatly between each household. There aygbaks, the first peak around 15 GJ/household is
mostly from single-person households and the sepeaf around 30GJ/household is mainly from the
households with two or more people.

175m2~
150~175m?

0~25m?

(steel) \ Detached house More than 6
(wood)

Number of buildings

0 20 40 60 80 100 120 140 160 180 200

Annual energy consumption (GJ/Yr)

Detached house Detached house
0,
(others) 3% (steel)

Figure 2-81: Basic information of the households Figure 2-82: Annual to.tal. energy consumption of all
buildings

Figure 2-83 shows energy consumption according hi® house type. Average annual energy
consumption of a detached house and an apartmergehare 57.0GJ and 27.3GJ, respectively.
Normally, detached houses have larger floor araa #partment houses, and there is also greater heat
loss. Therefore, energy consumption of a detacledéis considered to be bigger than an apartment
house. It can be found that kerosene consumpti@dsgtached house is much bigger than that of an
apartment house. This also points to the possilitiat the ownership ratio of the heating apparatus
using kerosene is higher in detached houses.

Figure 2-84 shows energy consumption accordinghé rtumber of occupants. In the figure, DH
means detached house, AH means apartment housah@antumber after DH or AH means the
number of occupants. Energy consumption increase¢seanumber of family members increases. As
for energy consumption per person, energy consomgénds to decrease as the number of family
members increases. However, single-person houseleolisume less energy because the occupants
go out for a long time, and they tend not to fikk tbathtub with hot water, but only use the shower.
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Figure 2-83: Energy consumption by house type FEdiB84: Energy consumption by number of
occupants

Figure 2-85 shows the boxplot of energy consumptimreach end use. The annual average energy
consumption for hot water supply was 15.2GJ/housklspace heating was 12.5GJ/household, space
cooling was 0.3GJ/household and other was 13.8@gémmld. The highest energy consumption came
from hot water and space heating required the skowst amount of energy. Energy consumption of
space heating varies greatly compared to the cagsgthot water supply” and “other”. This may be
because the airtightness and insulation of the enmftuence the consumption, in addition to space
heating usage condition. The energy consumptiorsface cooling was much smaller than those of
hot water supply and space heating.
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supply heating cooling

Figure 2-85: Energy consumption for each end use

Figure 2-86 shows the relationship between the ggneonsumption of space heating and usage
condition of air-conditioner. The energy consumptiof space heating increases as the utilization
frequency of the air-conditioner is higher, andwvés low when the air-conditioner is turned off
frequently.
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Figure 2-86: Relationship between energy
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Figure 2-87: Relationship between energy
consumption of space heating and clothes

Figure 2-87 shows the relationship between eneoggumption and clothes. When occupants always
wear many layers, energy consumption of spacenrweatas small, however, when occupants always
wear less clothes, energy consumption was higher.

Figure 2-88 shows the relationship between eneogygumption of space cooling and the utilization
frequency of the air-conditioner. When the numbledays that space cooling is used increases, the
energy consumption also increases.

Figure 2-89 shows the relationship between the ggneonsumption of space cooling and usage
condition of air-conditioner. The energy consumptaf space cooling directly correlates with the
utilization frequency of the air-conditioner, afmbtefore the energy consumption resulting from epac
cooling was low when the air-conditioner is turrmgtifrequently.
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Figure 2-90: Relationship between energy Figure 2-91: Relationship between energy
consumption of hot water supply and energy saving consumption of hot water supply and additional
action taking shower heating of bath water

Figure 2-90 shows the relationship between theggneonsumption for hot water supply and saving
water when taking shower. When occupants try te seater, energy consumption of hot water supply
tends to decrease, and when occupants use avatterf, energy consumption increases.

Figure 2-91 shows the relationship between eneoggumption for hot water supply and additional
heating of bath water. As the frequency of addaldmeating increases, energy consumption clearly
increases. If the occupants do not fill bathtulbhvibt water, energy consumption of hot water islsma
If the occupants use an automatic control to settéimperature of the hot water in the bath, energy
consumption of hot water is especially high. Thergg consumption of space heating is set as
dependent variable.

Figure 2-92 shows the category weight of each itérenergy consumption for space heating. The
coefficient is 0.436 and the constant is -1.74. fibese type and the number of occupants have large
impacts on space heating. In detached housesetiragier area is much larger than that of apartment
houses, so heat loss and energy consumption drénlgbter. Moreover, the earlier the house was built
the higher the energy consumption. One reasonatptaration could be that the quality of the
insulation and airtightness in old houses are ovenergy consumption is higher. As for the usage
condition of space heating, the household that arely “Often keep on” and “Always keep on”
consumed high amounts of energy. Furthermore, & dtcupants wear many layers, energy
consumption is lower than others. From these rgsattergy consumption can be reduced by certain
occupant behaviors.

Energy consumption of space cooling is set as artgmt variable. Here, since a question is asked
about air-conditioner (except for an electric fargage, the household that do not use an air-
conditioner are removed from analysis. Figure ZB8ws the regression coefficient. The coefficient
of determination is 0.120 and the constant is Q.08% utilization frequency and the number of
occupants have a large impact on energy consumpticaddition, the energy consumption of space
cooling increases as number of occupants incredd@®over, energy consumption increases as the
number of days an air-conditioner is used increashs year built and turning off air-conditioner
frequently do not influence energy consumption. €hergy consumption of hot water supply is set as
a dependent variable.

Figure 2-94 shows the regression coefficient. Toeffecient is 0.396 and the constant is -1.9. The
number of occupants has a high influence on eneomsumed by the hot water supply. Energy
consumption of hot water supply clearly increaseshamber of occupants increases. The second
largest factor is trying to save water when talanghower. If the occupants try to save water, gnerg
consumption decreases. The third largest fact@heating bath water. Energy consumption increases
as the frequency of reheating bath water increabtseover, if occupants control the water
temperature using an automatic control, energywops$on is the largest. When the occupants use an
automatic control, the bath water reheats frequewnithout occupants being aware. When the
occupants intentionally try to save water, they i@tuce their energy consumption.
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2.3.5 Conclusions

The survey was conducted to clarify actual enem@ysamption from October 2008- March 2009 in
Sendai. A total of 1274 households responded tsuineey. The results are as follows:

The average annual energy consumption in Sendaialvast 41GJ/household. The average energy
consumption of the detached houses was largertiiaof the apartment houses.

Energy consumption increased as the number of antspncreased. As for energy consumption per
person, energy consumption tends to decrease asithiger of family members increases.

Energy consumption of hot water supply was thedstrgend use. The annual average was 16.8
GJ/household, followed by energy consumption oep#nd space heating. The energy consumption
of space cooling was much smaller than other eed.us

There was a clear difference in levels of energysamption between the households that tried to save
energy and ones that did not tried to save.

The actual largest end use of energy consume isvatar supply, but most households think space
heating is the biggest. Few occupants respondedhbg could reduce the energy consumed by the
hot water supply. This may be because they do notvkthat the energy consumption of hot water
supply is large.
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Most people practiced energy saving actions. Orother hand, the energy saving actions related to
the bath were not carried out very often.

From the results of multiple regression analysis, iumber of occupants and year built have a large
impact on the energy consumption of space hedtogthe energy consumption of space cooling, the
utilization frequency and the number of occupattecha large impact. For the energy consumption of
hot water supply, the number of occupants andzatibn behavior related to the shower and reheating
bath water have a large impact.

According to the analysis, it was found that oceupbehavior had a large impact on energy
consumption. There is potential to reduce energysemption in the residential building sector by
changing occupant behavior. It is important foruggants to understand how much energy they use for
each end use and find the best way to reduceghengy consumption.
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2.4 Experience 4. Statistical analysis on energy consytion of residential buildings in
China

(Tianchi Hu, Hiroshi Yoshino)

2.4.1 Introduction and the aim of the analysis

The energy consumption of residential sector has lrecreasing significantly over past three decades
Therefore, it is necessary to analyze how muchggner used by various sources and the factors
influencing energy so as to reduce energy consmmji residential buildings. In this study, a large
scale questionnaire survey has been conducted aotyclactual condition of yearly energy
consumption in the urban areas of Harbin, Urumagiljdh, Beijing, Maanshan, Shanghai, Chongqging,
Changsha, Guangzhou and Kunming. The investigatgdot Beijing was divided into Beijing(A)
where households use district space heating systechBeijing(B) where households use domestic
space heating.

Quantification Theory is used based on the results of measurement arstiaqueaire, so as to find
out the important factors that influence the enaxgrysumptions in ten cities.

2.4.2  Outline of the survey

Location of investigated cities

The survey was conducted in the urban areas ofifadoumgi, Dalian, Beijing, Maanshan, Shanghai,
Chongging, Changsha, Guangzhou during 2007/10-20G81d Kunming during 2008/10-2009/9.
Figure 2-95 shows the location of these investijaiges. The investigated cities are all majoresit

in China and are distributed in the five zones [1].

Harbin

Urumgi /
— Beijing | Very Cold Zone

Very Cold Zone

s~ Maanshal

Hot Summer \ .
& Cold Winter Shanghai

Chongging Moderatt Zong Changsha
_ / H er & —Guangzholi
Kunming Warm Winter

Figure 2-95: Location of investigated cities.

2.4.3  Investigation method

This study was done by using questionnaire sur¥ée questionnaire were distributed as well as
collected through the cooperative researchers ¢allaniversities. Total number of 1004 families
living in urban areas of the ten cities was setbdte the researchers. Table 22 lists the invesbigat
date, and number of distributed questionnaire,lfaeki and meter readings. Each family was asked to
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answer a questionnaire for the summer and win@saes, including basic information related to the
characteristics of their building, heating & cogjiperiods, daily operation time, usage of heating &
cooling appliances, number of occupants, annuaniecand thermal sensation. In addition, monthly
consumptions of electricity & gas of each familyaityear was collected by the meter readings.  thi
investigation, consumption of energy by centratriis heating is not included in Harbin, Urumqi,
Dalian and Beijing. The investigated city of Begiwas divided into Beijing(A) where households use
district space heating, and Beijing(B) where hoosthuse domestic space heating.

Data processing for deleting and selection

The families are taken as samples, and all thesitenthe questionnaire are taken as variables. The
methods of the processing for the missing data teféhe method in the research by Chen et al. [2].
The numbers of feedbacks of questionnaire and medelings are the valid sample quantities.

2.4.4  Results of the investigation

Building characteristics

67% in Chongging, 52% in Changsha and 48% in Guamgare more than 126mas shown in
Figure 2-96. The average floor area in Chongqint38.6 m (the largest among the ten cities). And
in Guangzhou, Changsha and Kunming, the average di@a is about 105%rin Dalian, the average
floor area of residences is 57,rand 41.5% of residences are below 60 m

E<60m 060~80m D80~100m [O100~120m &>120m
T T T

B Aluminum alloy Plastic steel 0 Wood [ Iron

Harbin | ~.".~ Harbin
S S —— : : s
Dalian | Dalian
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Figure 2-96: Floor area of residences

Figure 2-97: Material of window frame

Figure 2-97 shows the material of window framesdusethe ten investigated cities. More than 60%
of the housing units used aluminum alloy as windivame material in Kunming, Guangzhou,
Changsha and Shanghai. Plastic steel window fraaregopular in Chongqging, Maanshan, Dalian,
Urumgi and Harbin. In Beijing, belongs to the calne of China, plastic steel window frame and
wooden window frame are normally adopted becaus$kenf heat transfer coefficients are low.

Housing appliances

The residences in Harbin, Urumgi, Dalian and Bgijrere equipped with central heating systems. In
Beijing, besides 41% of households used centraingea32% used individual heating, and 24% used
both of them. Households in Changsha, Chonggingn@ai and Maanshan used individual space
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heating units. The possession rate of heating apgdis in Guangzhou and Kunming is very small,
especially in Kunming, only 2% of households havace heaters shown as Figure 2-98.
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Figure 2- 98: Types of heating appliances Figur®2: Possession of air-conditioner

Figure 2-99 shows the possession of air conditioBach household in Changsha, Chonggring and
Shanghai, and more than 95% of households in Maangind Guangzhou had installed air-
conditioners. However, very few households haccairditioner in Kunming, Urumgi and Harbin, as
the climate is moderate in these cities in summgpgecially in Kunming, only 5% of homes had air-
conditioners. The possession rate of electric faeagh household in Kunming, Urumgi and Harbin
was smaller than that of other seven cities, eafigén Kunming, only 14% of households had a fan.
The possession rate was highest in Guangzhou,@db5the families owned three fans.

Considering the water heater, 9.6%, 6.1% and 2%%%esidences in Harbin, in Beijing and in
Changsha were respectively equipped with centralmaber supply systems, while residences in the
other cities were equipped with individual wateatee. Figure 2-100 shows the energy sources of
individual water heater. The gas water heater &s rttost popular type in Guangzhou, Changsha,
Chongging and Shanghai, while the electrical watsiter is common in Dalian and Urumgi. It is
worth mentioning that many households in Kunmingadishan, Beijing and Urumgqi were equipped
with water heater of solar energy, especially imKing with large percentage above 55%.

Family characteristics

Regarding the number of family members, the threepfe is the main type among investigated
families, the size of families in Harbin, Urumgialian, Beijing and Changsha was commonly 3-
person. The average family size in Maanshan, Staaragid Chongging was below 2.7 people, while
the average Guangzhou family was 3.4 people.

Figure 2-101 shows the annual income of the fantlpuseholds in Chongging had the highest
income, there were 17% of the households havingi@nncome above 150,000 RMB, and 25% of
the families had the annual income between 50,0@) 00,000 RMB. The annual income of

households in Kunming ranked second. The househwiills annual income above 150,000 RMB,

between 100,000 and 150,000 RMB, and between 5@&060.00,000 RMB, were 9%, 4% and 37%
respectively. The annual income between 30,000 %1800 RMB is common in Changsha. The
families in Urumgi had the lowest annual incomeq &2% of the families earned less than 30,000
RMB in a year.
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Figure 2-100: Energy sources of individual water

Figure 2-101: Annual income of families
heaters

Operation of heating and cooling

Figure 2-102 illuminates the operation period céditireg in a year among all the investigated families
The heating period in Harbin, Urumgi, Dalian andjiBg was longer than other investigated cities.
The households in Harbin and Urumqi used spacengeiom October to April of next year, while
the households in Dalian and Beijing used spacértterom November to March of next year. In
Guangzhou and Kunming, the percentage of houselsidg heating was very low with the average
of 15% from October to March of next year and 5%nfr December to March of next year
respectively, since these two cities have genevedlymer winter than the other cities. Heating perio
in very cold and cold climate zones is normallygenthan that the other zones.

In Harbin, Urumgqi, and Dalian, the heating systwas operated throughout each day, as shown in
Figure 2-103. In the other seven cities, therenis peak in the evening hours from 18:00 to 22:0@ T
daily using time in very cold and cold climate zemeas longer than that the other zones.

- Harbin -x- Urumgi -+-Dalian - Beijing —- Maanshan —e Harbin -u- Urumai —o-Dalian -+ Beijing —a Maanshan
—o-Shanghai - Chongqing -=-Changsha -%-Guangzhou -- Kunming

-o- Shanghai - Chongging -+ Changsha  -x- Guangzhou -+- Kunming
100% i ———N 20—

100%

80% 80%

60% 1 60% -~ — —— ——
40% - 40%

20% A 0% — - — = 4\

0% it o0 SEEEEEE oot o

i
0:00 4:00 8:00 12:00 16:00 20:00 0:00

Figure 2-102: Operation period of heating in winter Figure 2-103: Daily operation of heating in winter

Figure 2-104 shows the operation period of air-émming in summer among all the investigated

cities. Each city used air-conditioning from Juae&Xctober, except Kunming where less than 30% of
households used air-conditioning between July amgluAt.

Regarding the daily operation of the air-conditiapia very few residences in Harbin, Urumgi and
Dalian used air-conditioning due to the good weatlieghe summer in these cities. The hours of peak
air-conditioning usage in Beijing was from 18:0022:00 utilized by 30% of the households, and in
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Maanshan the peak was around 20:00 used by 90#mifids, as shown in Figure 2-105. The daily
using time of air-conditioning in Chongging was thegest among all ten cities.

—e— Harbin - Urumgi -o- Dalian -~ Beijing —A- Maanshan

—8- Harbin - Urumgi =0~ Dalian —A— Beijing -X- Maanshan . . N
—o-Shanghai  -w-Chongging - Changsha -%- Guangzhou -+-Kunming

-0-Shanghai % Chongging —4-Changsha —%-Guangzhou —#-Kunming 100%
0

100%

% o
80% 4 80%

% -
60% tepuosaoan

60%

0% 4 —————— - B - - — - —

40%

20% 20% + — e+

1% f
0% Rt i st 0% O000LTH AT 301703 % %
Apr May Jun Jul Aug Sep Oct Nov 0:00 4:00 8:00 12:00 16:00 20:00 0:00

Figure 2-104: Operation period of AC (summer Fig@-105: Daily operation of AC (summer)

Energy consumption

a) Monthly energy consumption

Electricity and the different kind of gas are comed to calorific values [2-3]. Figure 2-106 shothe
annual energy consumptions of ten cities with titel tnumber of respondents shown next to the city
name. The annual energy consumption in Chonggiached 19.2 GJ which was the largest consumer
among the ten investigated cities, cooling accalfite 1.4 GJ which was also the highest among all
the cities, and cooking accounted for 7.1 GJ. lijilBA), households who use district heating
consumed 12.5 GJ of energy. On the other handinB&J) households who use domestic heating
consumed 15.6 GJ which was the second largestingeased 3.1 GJ accounting for 20% of the
annual energy use. From the results of this surteyas found that Guangzhou was the third largest
energy consumer with the total annual energy copsiomreaching 15.2 GJ, and cooking accounted
for 7.2 GJ. It can be seen that energy consummiadooking in Guangzhou and Chongging are the
first and second largest consumers respectivelis iEhmostly due to the fact that Chinese people in
these two cities enjoy cooking more comparing teeotities.
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B Space cooling & Space heating @ Cooking O Hotwater m Other

Harbin(s8) District heating

is not included

Urumgi(32)

Table 2-22: End use of energy consumption paiiano)

Type Energy End use Beiing(d) 13) [
source I
Type 1 Electricity  Cooling & heating, ~ °®©» RN
lighting, others Maanshan(49) §
Gas Cooking, hot water
Type 2 Electricity = Cooling & heating, Shananeic® |
lighting, hot water, Chongging(24) L2
others 1
Gas Cooking Changsha(12)

Guangzhou(47) pik

Kunming(74)

Energy consumption [GJ/year]

Figure 2-106: Energy consumption in a year

b) Analysis on the influence factors of energy consuntipn

The partial correlation coefficient of Quantifiaati Theory | is usually used as an important inaex t
evaluate contribution extents of independent véggmlo the dependent variable. The significance tes
is taken to judge what extent the partial correlattoefficient would be, then the factors will have
effect on residential energy consumption. The $icgrice probability is bigger, the partial correat
coefficient is less, and the factor affects residdenergy consumption is less. It is assumedithibe
significance probability is less than 0.05, thetdachas influence on energy consumption [4]. The
category weight value of each variable is usednyae the influence extent of all the categories o
qualitative variables and quantitative variablesttom dependent variable. The larger the valuehes, t
more the energy is used.

The qualitative and quantitative independent véemsed in this analytic model refer to buildingtu
characteristics, family characteristics and housipgliances. The annual energy consumption amount
of each family sample is taken as the dependermdblar Software of SPSS (Statistical Program for
Social Sciences) is used for calculation. Ten iiee classified into two main groups, Group 1 and
Group 2, based on the type of space heating. ®ineggy consumption data of district heating is not
included in this survey, Group 1 includes Harbimutdgi, Dalian and Beijing(A) where households
use district heating, and Group 2 includes Beig)gMaanshan, Shanghai, Chongging, Changsha,
Guangzhou and Kunming where households use dontesttong.

¢) Analysis on the influence factors of energy consuntipn in Group 1

Table 2-23 shows the results of the influence factm annual energy consumption of Group 1. It can
be seen that the type of water heater and the nuofbéamily members are the two important
influence factors on annual energy consumption. Whter heater type is the most important factor
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influencing annual energy consumption based owatses of the partial correlation coefficient and
the significance probability. The value of categasgight can be used to judge the influence extént o
categories of qualitative variables, and largeugdhdicates that this category leads to largerggne
use. Thus, water heater of electricity has theesirgcategory weight value, indicated that the
households using electricity-driven water heaterghese cities consumed the most energy. The
households using solar energy, on the other handsurned the least energy. Regarding the
construction year, the older buildings consumeddaenergy since new buildings has better energy
saving performance. Considering window frame, waad plastic steel window saved more energy
than the other types. The buildings using wood mslew frame consumed the lesser energy. As for
the quantitative variables, the larger the floaaais, the larger the number of family membershis,
more annual income is, the more HDD (Heating dedgae indoor temperature set as 18 °C) is, the

more the energy is used.
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Table 2-23: Influence factors on annual energy comgtion of Group 1.

Influence factors Categories Sample Categoriesiweig Partial Significance
correlation  probability
coefficient

Location Harbir 58 = 0.148 0.330

Urumqi 36 =
Dalian 53
Beijing(A) 13 =
Construction year  Before 198( 16 0.296 0.007
80s 28 —
90s 67 =
After 2000 49 [—
Building structure  Brick concret 10C = 0.202 0.040
RC 49
Other 11 |

HDD <300( 64 0.186 0.275

(°C-day >3000 96 ]

Floor area <60 n? 28 0.217 0.026

60 - 80 38 [

80 - 100 50 =

100 - 120 23 [

> 120 nt 21
Window frame Aluminum alloy 38 = 0.084 0.776

Plastic steel 89 o

Wood 18 =

Iron 15
Energy source of Gas 31 0.429 0.001
water heater Electricity 74

Solar energy 22

Other 33
Annual income < 10000 13 = 0.102 0.807
(Yuan) 10000 - 30000 14 o

30000 - 50000 37 =

50000 - 100000 61 =

> 100000 35
Number of family 1 11 0.324 0.002
members 2 35 —

3 86 =

>4 28

3 2 1 0 1 2 3 4 GJlyear
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d) Analysis on the influence factors of energy consuntipn in Group 2
Table 2-24: Influence factors on annual energy comstion of Group 2.

Sample

Partial

Influence factors Categories Categories weight correlation Significance
coefficient probability
Beijing(B) 90 3 |
Maanshan 56 ﬁ:
Shanghai 123 —
Location Chongging 56 0.404 0.001
Changsha 26 -
Guangzhou 50 =
Kunming 74
Before 1970 17 —
70s 25 —
Construction year 80s 86 = 0.224 0.002
90s 180 o
After 2000 167 [
Brick concrete 220 —
Building structure RC 221 0.217 0.003
Other 34 [
<1000 124
HDD 1000 - 2000 235 = 0.209 0.004
(°C-day)
> 2000 116 |
<100 220 ]
(CogPday) 100 - 200 205 o 0.223 0.002
> 200 50 :
<60 nf 63 [—
60 -80 M 103 [
Floor area 80 -100 A 96 I 0.226 0.002
100 - 120 rA 83 =
> 120 nt 130 —
Aluminium alloy 231 —
) Plastic steel 163 [
Window frame 0.203 0.004
Wood 46
Iron 36 —
Gas 266 —
Energy source of water Electricity 83 A 0.215 0.003
heater Solar energy 87 :
Other 39 —
< 10000 45 :
10000 - 30000 119
Annual income (Yuan) 30000 - 50000 145 = 0.201 0.004
50000 - 100000 121 j—
> 100000 45 —
1 47 {m—
2 103 [
Number - of ~family 224 i 0.192 0.005
4 73
>5 28 e
T
3 2 1 0 1 Gllyear
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Table 2-24 shows the results of the influence factin annual energy consumption of Group 2.
Annual energy consumption results from the intemtanfluence factors in different aspects. City
location, construction year, building structuregoll area and CDD (Cooling degree-day, indoor
temperature set as 26 °C) are important factodsien€ing the annual energy consumption; city
location is the most important influence factor agothese factors. The results showed that
Chongging had the largest category weight valuglevBeijing (B) Guangzhou and Changsha ranked
after Chongging, while Kunming had the value atghwllest in seven in cities. This change trend of
value in these cities is also consistent with thegnitudes of energy use amounts in these cities.
Considering the building structure, the buildingsstructed by reinforced concrete are distinctbgsle
energy efficiency than the other structures. Raggrthe window frame, the buildings used wood as
window frame consumed the least energy since therrabhas the smallest heat transfer coefficient.
Solar energy water heater helps to save energye wie families used gas water heaters consumed
the most energy. Based on the saturation of wagatehs in these cities, the prevalence of solagmwat
heaters in Kunming and Maanshan can lead to theeloavgy use in some extent in the two cities.
Considering CDD, category of 100-200 used moregntran the others.

For the other quantitative variables, the larger floor area is, the larger the number of family
members is, the more annual income is, the more ¥DMe more the energy is used.

2.45 Conclusions

This study investigated the urban residential enemnsumption under actual conditions by the way
of questionnaire survey on Chinese families thsideeat various climate zones. The following aee th
key findings of this study:

Most of the investigated buildings are built bychriconcrete except in Guangzhou and Kunming
where almost 70% of the buildings use reinforcedcoete as building structure. As for floor area,
67% of the residences in Chongging are more th@mf2which is the largest.

Family size with 3-person is common. However, therage family size in Guangzhou is 3.4 people.
Households in Chongging has the highest income, @¥%e households have the annual income
above 150,000 RMB, and 25% of the families haveatweual income between 50,000 and 100,000
RMB.

Almost every household in Harbin, Urumgi, Daliarda@eijing equipped with central heating system.
Regarding the operation of heating, the heatingodsrin Harbin, Urumqi, Dalian and Beijing are
longer than the other cities, all residences inbifarUrumgi and Dalian use heating in every day. On
the other hand almost all households in Maanshaanghai, Chongging, Changsha and Guangzhou
have cooling equipment such as air-conditionersfans.

Annual energy consumption in Chongging reaches G39.%vhich is the largest among the ten
investigated cities, and cooking accounts for 7J1 I@ Beijing (B) where households use domestic
heating consumes 15.6 GJ which it is the secomng$dy the heating use 3.1 GJ accounting for 20% in
the total.

In Group 1, the water heater type is the most intgmrinfluence factor, and the number of family
members is the second most important influenceofaain annual energy consumption. In Group 2,
city location, construction year, building stru@urfloor area and CDD are important factors
influencing annual energy consumption. The cityatamn is the most important factor influencing
annual energy consumption.

179



2.4.6 References

[1] Department of Construction of the PRC, Thermal glesiode for civil buildings GB50176-93,
China Plan Press, 1993.

[2] G. Yuan, Designing Handbook of Gas in Buildings,ir@hArchitecture and Building press,
Beijing, 2001.

[3] Y. Xiang, Common-use Data Handbook in Gas Thermatha Engineering, China Architecture
and Building Press, Beijing, 2000.

[4] W. Zhang, Statistical Application, Advanced EdugatPress, Beijing, 2004.

180



2.5 Experience 5: Field Survey and Statistical Analysesn Energy Consumptions in the
Residential Buildings in Japan

(Hiroshi YOSHINO, Graduate School of Engineering, ©hoku University, Japan)
(Ting SHI, Building Research Center, Vanke, China)

2.5.1 Introduction

Field surveys of energy consumptions have beemedaout in eighty residential buildings which are
located in six different districts of Japan, wittetpurpose to understand the energy consumptions by
end users in residential buildings and then todoufl a national-level database. In addition, gstesis
analyses were conducted so as to find out theenfial factors on residential energy consumptions i
Japan. Finally, the database and the statisticallys@s results will be of help as evidences for the
house makers and equipment manufacturers to dooamvént-friendly developments, as well as for
the residents to select environment-friendly hoa&khppliances to install into their houses.

2.5.2  Outline of the investigation

Selection of the households

The two-year survey on energy consumptions was wainad in eighty households located in six
different districts of Japan (Figure 2-107) fromdember 2002 to November 2004. The six districts
are Hokkaido, Tohoku, Hokuriku, Kanto, Kansai and/ukyu (including Okinawa). Fifteen
households were selected in Kanto District, andel@h households were selected in each of the rest
five districts. Two types of residential buildingsamely detached house and apartment, respectively,
were under investigated. In each district, ninesetwlds live in detached houses and the otherdnlive
apartments. Households which met the following mssleconditions and/or optional conditions were
selected in the survey.

District Number

* B  [Hokkaido 13

i B ([Tohoku 13

] B  |Hokuriku 13

s for [ |Kanto 15

T S [ | |Kansai 13
gf [ 1 |Kyushu Okinawal 13
Total 80

Figure 2-107: Location

Essential conditions

Among the nine detached houses in each distritéaat four of them are wood constructed with floor
area around 100~156rand meet the local new energy saving standard.

Three or four family members: husband, wife and ton®vo children.

Optional conditions

The houses which can represent the district cheniatits (e.g., well insulated and air-tight houses
Hokkaido) are selected.

Give priorities to the households which can coojgeirathe long-term investigation.

Investigation items and methods

181



Table 2-25 shows the investigation items and meth8gecial instruments as shown in Figure 2-108
(a, b, c) were used to measure the consumptiomeseofricity, gas and kerosene, while data loggers
with temperature sensors as shown in Figure 2-@P&¢re used to measure indoor air temperatures.
The electricity measuring systems record elecyricinsumption in one minute (Wh) and the peak
value (W). The kerosene measuring system has arfieter inside, which record the kerosene volume
(I in five minutes by the pulse logger. The tengtere and humidity data loggers, which were set in
the air-conditioned and non-air-conditioned roorhsha height of 1.1m above floor, record the data
every 15 minutes. In addition, questionnaire arafing surveys with the cooperation of the occupants
have been carried out to know their lifestyles.

Table 2-25: Investigation items and methods

Item Method
Electricity |Measured by instrument every one minute
Field Gas Measured by instrument every five minute

Measuremen{&erosene Measured by instrument every five minute
|Temperature Measured by data loggers with temperatusersesvery 15 minutes
Questionnaire Survey [Life style, Concious on environment, Annual incomdization of equipment
Hearing Basic information of the building, Family members...

=)

Figure 2-108: Measuring instruments (a, b, ¢ anfdain left to right: electricity, gas, kerosene and
air temperature)

Energy indicator

Basically, energy indicator in the database islfisacondary) energy consumption. Table 2-26 shows
the energy conversion coefficients for differemtds of energy sources [12]. Energy end users were
classified as shown in Table 2-27. The classificatias three levels. There are ten categoriesein th
first level, which are 1) total energy consumpti@),heating, cooling and ventilating (HVAC), 3)
domestic how water (DHW), 4) lighting, 5) kitcheg), refrigerator, 7) entertainment and information,
8) housework and sanitary, 9)others, and 10) géparée.g. photovoltaic power generation). The ten
categories were classified into more detailed, tincthe second level. For example, hot water suppl
is divided into hot water supply for bathroom, fdtchen and others. Finally, the third level is the
energy consumption for individual household eleatlriappliance. In addition, rated electricity
consumption and stand-by power of the electricpliapces were divided if possible.

Table 2-26. Conversion coefficients of energy sesirc

Energy Source Conversion Coefficient
Electricity 3.6 MJ/kWh
Kerosene 36.7 MJ/L
LPG 50.2 MJ/Nni
City Gas (4A~7C) 20.4 MJ/Nr
City Gas (12A~13A 45.9 MJ/Nm
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Table 2-27: Energy end users

First level Second level Third level Energy source First level Second level Third level Energy source
Purchased power QSecondary energy Television Electricity
1) Total energy Pgwer seling QSecondary energy Vedio Electr?c?ty
consumption Household  |City gas OSecondary energy Dvp playgr Electr!c!ty
Kerosene OSecondary energy Audio/radio casette Electricity
Wood, etc Game Electricity
Air-conditioner OElectricity Entertainment [BS/CS turner Electricity
Cooling Gas alir-conditioner Ga§ . Tuner . EIectr?c?ty
(summer) Electrical fan Electricity CATV terminal Electricity
Dehumidifier Electricity CATV hooster Electricity
Others (heat exchanger, etc) Electricity 6) Entertainment Wireless lan (main and extension) Electricity
Air-conditioner OFElectricity and Electrical piano Electricity
Gas air-conditioner Gas information Computer Electricity
Kerosene air-conditioner kerosene Telephone and fax Electricity
Electrical floor heating OElectricity Telephone extension Electricity
Gas floor heating Gas Entry phone Electricity
Kerosene floor heating kerosene Information TV door phone Electricity
2) Heating, cooling Kotatsu (Japanese electrical heating table) Electricity Telephone security unit Electricity
and ventilating Heating Electrical carpet Electricity Telephone battery charger Electricity
(winter) Gas fan heater Gas Cellphone battery charger Electricity
Kerosene fan heater kerosene Shredder Electricity
Kerosene stove kerosene Security |Home security Electricity
Electrical heater (panel heater, etc) Electricity Washing machine Electricity
Heat storage heater Electricity Gas washing machine Gas
Humidifier Electricity Cloth dryer Electricity
Electrical blanket Electricity Gas cloth dryer Electricity
Others Electricity Housework |Iron Electricity
Ventilation | 24hours ventilation system OElectricity Vacuum Electricity
(exclude range [Local ventilation Electricity Sewing machine Electricity
hood) Air cleaner Electricity Futon dryer Electricity
Electrical water heater OElectricity Trousers press Electricity
7) Housework —— —
Hot water supply [Gas water heater Gas and Sanitary Warm-water cleaning toilet seat Electricity
(bathroom)  [Kerosene water heater kerosene Dryer Electricity
Others Electricity Bathroom heating (dryer) Electricity
Electrical water heater Electricity Gas bathroom heating (dryer) Gas
S Hot Wfiter supply |Gas water heater Gas Sanitary Electr@al shaver Electr@c@ty
(kitchen) Kerosene water heater kerosene Electrical tooth brush Electricity
Others Electricity Inhaler Electricity
Electrical water heater Electricity Electrical mosquito swatter Electricity
Hot water supply [Gas water heater Gas Electrical spetic tank Electricity
(others) Kerosene water heater kerosene Medical care |Medical machine Electricity
Others Electricity Electrical shutter Electricity
o o Lighting Electricity 8) Others Others  |Tank Electricity
4) Lighting Lighting Table lamp Electricity Unclear iterms Electricity
E!ectrical cooker (IH and 200V equipment) OEIectlriF:ity 9) Generation Generation Photovaltaic power generation EIectr?c?ty
Microwave Electricity Solar water heater Electricity
Electrical oven Electricity the items with "O" are necessary items
Gas oven Gas
Rice cooker Electricity
Gas rice cooker Gas
Cooking  [Pot Electricity
Table stove/plate Electricity
Toaster Electricity
5) Kithchen Coffee maker Electricity
Juicer/blender Electricity
Home bakery Electricity
Gas cooker Gas
Refrigerator OElectricity
Range hood Electricity
Dishwasher Electricity
Others Gas dishwasher Gas
Water filter Electricity
Rice mill Electricity

2.5.3 Investigation results

Annual energy consumption
Figure 2-109 and Figure 2-110 show the annual eneogsumptions for the 80 households during
one year from December 2002 to November 2003 amwh fbecember 2003 to November 2004,
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respectively. The blanks in the figures indicatattineasurements were not carried out in such
households. The results show that energy consumptivied widely in different households. The
maximum value was about twice of the minimum vadwen in the same district. In general, annual
energy consumption decreased when the household gmethward. In Hokkaido, Tohoku and
Hokuriku, where have cold winters, annual energgsconptions were larger than other districts.
Besides, energy consumptions for HYAC and DHW anted for a large ratio (about 80% of the total
energy consumption) in these districts. In addijtienergy consumption for HYAC and DHW also
varied widely in different households. The maximwalue was about three or four times of the
minimum value. The differences of energy consurmstitor HVAC and DHW are considered to
result in the differences of total energy consuoptn residential buildings.

[N
©
o

B Heating, cooling and ventilation
O Domestic hot water

OKitchen

DOEntertainmentand information
® Housework and sanitary
BLighting and others

I
=]
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A: Apartment —
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o
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Annual energy consumption [GJ/Year + Household]
o]
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Hokkaido Tohoku Hokuriku Kanto Kansai Kyushu&Okinawa

Note: Measurements were not carried out in these households: A0S of Kanto, D07, D08, A04 and A05 of Kyushu & Okinawa

Figure 2-109: Annual energy consumptions for thén80seholds (Dec. 2002 ~ Nov. 2003)
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Note: Measurements were not carried out in these households: D05, D07, AO1 of Hokkaido, D09, A04 of Tohoku, D03, D04,
A02,A03, A04 of Hokuriku, A0S of Kanto, D02,D03, D06, D07, A 01~03 of Kansai, D07, D08, A02, A03, AO5 of Kyushu & Okinawa

Figure 2-110: Annual energy consumptions for thén80seholds (Dec. 2003 ~ Nov. 2004)

Comparison between the first year and the second ge

Figure 2-111 shows the comparison of the annualggreonsumptions (Left: Energy consumption for
HVAC; Right: Total Energy Consumption) between thist year (Dec. 2002 ~ Nov. 2003) and the
second year (Dec. 2003 ~ Nov. 2004). The resultsvghat, although energy consumptions in these
households had some differences between the &t gnd the second year, the differences were not
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obvious. This indicates that residents have a atifleistyle and they do not like to change much. On
the other hand, households in Tohoku district coaee to live an energy-saving lifestyle (e.g.,
shortening heating/cooling period, appropriatingisg temperature, reducing heating/cooling space,
unplugging electrical appliances when not using,) &b the second year. Annual energy consumption
in such households became smaller compared toirsteykar, and the reductions in two of the
households were very obvious. Such results inditzae lifestyle of the residents is an important

factor to save energy in residential buildings.
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Heating space was reduced in the second year
Figure 2-111: Comparison between the first year #relsecond year
(Left: Energy consumption for HVAC; Right: TotalgEgy Consumption)
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2.5.4  Statistical analyses

Introduction
The investigation results showed that energy copsioms varied widely in Japanese residential
buildings. In order to find out what factors andrhiiey influence on residential energy consumptions
statistical analyses were carried out with the Itesaf 72 households with full energy consumption
information. In the statistical analyses, the delaen variables are the energy consumptions for
different end uses, and the explanatory variahiesre considerable factors as shown in Table 2-28.
When selecting the explanatory variables, the fahg matters should be well examined so as to
ensure the precision of the analyses.

* Do Not select any useless factor

* Do Not miss any useful factor

* Do Not select highly correlated factors so as wicthe problem of multi co-linearity.
With these considerations, explanatory variablegclvizcan be gained from the investigations were
used in the analyses, while those factors excetdeithvestigation items were not considered.
Three kinds of statistical methods were used inafi@yses, which are multiple regression analysis,
neural network, and quantification method. The n®ag multiple regression analysis and neural
network are used to predict the relationships betw@ependent variable and explanatory variables in
linear and non-linear way, respectively. On theeothand, quantification method is used to analyze
the influences of qualitative factors, which arsa#ed by texts, e.g. district, building type,.etc
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Table 2-28: Statistical methods

RS Neural | Quantification
NO. Factor Unit Regress_lor Meiueid i

Analysis

1 |District - - - O

2 |Type of the Building - - - O

3 | Age of the Building [Years] O @) O

4 |Floor Aree [ni] O O O

5 |Coefficient of Heat Loss Wi K] O O O

6 |Equivalent Area of Interstice 6/ ni] @) @) ©)

7 |CDDs,.. [C-Day] O O O

8 [HDDj4.1. [C-Day] O O O

9 |Living Room Temperature in Sumr [[C] O - O

10 |Living Room Temperature in Winter | (] O - O

11 |Number of Family members [Person O O O

12 [Number of Electrical Househc [Piece O - O

255 Result

Multiple regression analyses

The dependent variable is annual energy consumg@dnyear), and the explanatory variables are
shown in Table 2-29. Floor area had the largesdstalized partial regression coefficient, followsd
heating degree day and living room temperature immtes, which indicated that floor area, heating
degree day and living room temperature in wintet peeater effect on annual energy consumption,
compared to other factors. Figure 2-112 showselagionship between predicted values and observed
values. The coefficient of determination was OwRich indicated that energy consumptions in 72%
of the households can be explained by the multgdeession analyses.

Table 2-29: Results of multiple regression analyses

Factor Partial Rgg_ression Standar_dized Pal"ti.&ﬂ
Coefficient Regression Coefficient
Building Age [Year] -0.99 -0.18
Floor Area ] 0.36 0.48
Coefficient of Heat Loss [Whi - K] 2.71 0.12
Equivalent Area of Interstice fid/mi] 0.35 0.03
Family Members [Perspon] 3.57 0.14
CDD;;.54[°C-Day] -0.03 -0.10
HDD4.14[°C*Day] 0.01 0.38
Living room Temperature in Summéc] 1.15 0.09
Living room Temperature in Wintef(] 2.49 0.27
Electrical Household Appliances [Pieqe] 0.08 0.03

Constent -103.79
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Figure 2-112: Relationship between the predictedesand observed values

Neural network

Figure 2-113 shows the input and output layerseimral network analyses. In neural network, the data
will be divided into training data and validatingitd, where training data is used to analyze how
explanatory variables influence dependent variableile validating data is used to validate the
analyses. In this research, one household was maydeelected as validating data from each district
and the rest 66 households were used as trainiteg @able 2-30 shows the comparisons between
training data and validating data. Compared totthiging data, the validating data had smallerrfloo
area, equivalent area of interstice, but highendjwroom temperatures and annual energy consumption

Input Hidden Output
Building Age—
Floor Area—

Coefficient of Heat Loss—

Equivalent Area__
of Interstice
Family Members—

HDD —

Annual Energy
— Consumption

CDD—

Learning Phase
Figure 2-113: Input and output layers in neuralwetk

Table 2-30: Training data and validating data
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NO Ea Training Data (66Households) Validating Data (6Houskeolds)
) MAX MIN AVE MAX MIN AVE
No.1 |District —_ — — — — —
No.2 [Building Type — — — — — —
No.3 |Building Age [Years 35.0 1.0 5.5 13. 1.0 5.7
No.4 |Floor Area m] 240.0 46.0 122.9 159.0 70]0 108.2
Coefficient of Heat Los i
No.5 W/ K] 7.7 0.6 2.4 3.2 1. 2.2
Equivalent Area of Intersti
g
No.6 [cni/m] 13.3 0.2 2.8 2.9 0.3 14
No.7 |Family Members [Person] 6.0 2.0 3.6 5.0 2. 3.5
No.8 [CDDID;;. 24 625.5 0.0) 118.1 245.8 0)0 107.0
No.9 [HDD [Dy4.4 3220.7 54 15255  3220]7 6232  1597.6
Living room Temperature |
No.10 Winter [C] 24.9 11.1] 18.5 23.5 178 19.6
Living room Temperature
No.11 Summer {c] 30.9 21.9 27.4 28.y 26,8 28.0
Electrical Househo
g
No.12 Appliances [Pieces] 68.0 11.0 33.9 51.0 210 34.7
Annual Energ
No.13 Consumption [GJ/Year] 159.8 11.2 52.4 123.B 290 65.1

The Figure on the left hand side of Figure 2-11dwghthe relationship between predicted values and
observed values in neural network model with tragndata, while the right hand side of Figure 2-114
shows precision of the neural network analyses wafidating data. The coefficient of determination
in the validating model was 0.88, which indicatedttthe model in fact correct in 88% of the times.

N
o
o

g & 200
3 y = 0.87 x + 6.09 Z y=1.06 x - 0.45
*
S. 150 R?= 089 Q. 150 1 R*=0.88
()

= = .
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° °
g 501 g8 s0{ o
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o 0 o 0

0 50 100 150 200 0 50 100 150 200

Observed Value [GJ/Year] Observed Value [GJ/Year]
Neural Network Model with Validating NNW Model using
Training Data Validating Data

Figure 2-114: Results of neural network.
Figure 2-115 shows the importance of input layersirinual energy consumptions. It indicated that

heating degree day, family members and coefficinheat loss had more importance to annual
energy consumptions in Japanese residential bgsdiompared to other factors.
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Figure 2-115: Importance of input layers to anneakrgy consumptions

Quantification method |

In the quantification method type I, dummy variagbbre used and analyzed by multiple regression
method. Factors were divided into several categosied the category weights were calculated by
minus the average value.

Table 2-31 shows the results when the dependenablaris annual total energy consumption.
Numbers on the right hand side were Partial CaicelaCoefficients of the factors (PCC). The partial
correlation coefficients of district, floor areandafamily members were larger than other factors,
which indicated that these three factors had gredfect on annual energy consumption compared to
others. This table also shows that energy consompmtecreased as the household goes southward.
The difference between Hokkaido and Kyushu was 8BoGJ/Year. Households located in Hokkaido
with floor area larger than 12Gmand have more than four people in their home wmesl most
energy per year.

Table 2-31: Quantification method I: (Dependant iate: annual total energy consumption)

Item Category Sample Category Weight
Hokkaido 13 . . .
Tohokt 13 / 2.5.6  Conclusions and discussions
L Hokuriku 10
District PCC )
KK::Stg ;0 {/ (0.60) The national database of a two-year
i;yusht 36 L B investigation in the residential buildings in
T ouse -
Buldng Type |51 4 (015 Japan shows the following results.
Building Age (Year) = = A (0.30) Energy consumptions of the households in
S A ) I;gf gg . (0.47) Hokkaido d|st.r|ct. are the Iarge.st, fo.llov.ved
Coctciont of Heat L Lt 1z — by Tohoku district and Hokuriku district.
oefficient of Heat Los 1.5~2 18 : .
WIT-K) o 16 ( (0.29) These three districts have long and cold
2.5~ 17 R LI ; i
EquVATeT ATea ¢ = o l winter, heating and hot water supply are the
'"te::fe 13~3 il L (0.12) largest energy user there.
(eI’ - 5 R LR . .
. - ] 2¢ Iy Annual energy consumption did not change
amily Members 2 26 (0 42) .
(Person) yis 5 N @ much between the first year and the second
~10(¢ 42 . -
(of.?f;) L ! > (0.37) year, due to thg residents are W|II.|ng to
Y 200- 14 e R have a stable lifestyle. However, in the
oo oo g0 5 '\\ (0.35) households where the residents cooperated
2000~ 17 1 _ i i i
e = e to live an energy-saving Ilfestylfe in the
in Summer 27~2¢ 23 < (0.23) second year, energy consumptions were
(°C) 29~ 22 R L
Living room Temperatu ~17 23 K
in Winter 17~2C 22 (0.14)
“c) 20- 1c I R
Electrical Househo ~25 25 B\
Appliances 25~3( 17 I (0.127)
(Piece) 30~ 22 Py

-40 -30 -20 -10 0 10 20 30 40 50
GJ/Year



smaller than in the first year. Lifestyle is an wnjant factor that influences energy consumption in
residential buildings.

Besides air-conditioner, hot water supplier andgefator, television is the largest energy useoragn

the household electrical appliances in most offtbeseholds. In some households, electromagnetic
cooker, warm-water cleaning toilet seat, washingchiree (with dryer function) or dishwashing
machine consumed more energy than other appliakoesgy saving priorities should be given to
these appliances.

Statistical analyses using three different sta@dtmethods have been carried out to understand how
the factors influence energy consumptions in Jagmrrresidential buildings. Multiple regression
method was used to predict energy consumptionsigdeatial buildings with a set of already-known
individual variables (floor area, HDD, CDD, etcbhy using linear functions, while the method of
neural network was used to analyze the non-linekationship between energy consumption and
individual variables. On the other hand, quantifara method analyzed the influence of qualitative
variables (e.g. district, building type, etc.) bytroducing dummy variables. Due to the different
analysis approaches of the three different stegistinethods, the influences of individual variables
were different in three methods. However, heatimgrde day (HDD) has been clarified as an
important factor that influences annual energy oomgtion by all the three statistical methods.
Besides that, district was the most important gatiie factor, and the considerable reason is lsecau
different districts reflect different heating patfoand heating areas.

However, the set of individual variables used itistical analyses should be further discussed. For
example, factors related to human behaviors (@erating schedule of individual heating and cooling
equipment, setting temperature of hot water useddth and/or shower, utilization of natural energy
(e.g. photovoltaic system, natural ventilation).eshould be taken in to account. Researches and
analyze methods focus on the influence of humamels on residential energy consumption should
be developed in the soon future.
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2.6 Experience 6: Heating consumption assessment andrdégast of existing buildings:
investigation on Italian school buildings

(Stefano Paolo Corgnati, Federica Ariaudo, Marco Hippi)

2.6.1 Introduction

The study here presented is part of the long-temalysis of actual energy consumption, aimed at
monitoring, analyzing and forecasting energy corsion of a school building stock. Results can be
also useful for the definition of priorities in lding energy upgrading.

The provisional models for energy forecasting stidad robust and simple, based on easily collectible
data, in order to show with reasonable precisienbthilding stock energy demand tendencies.

With reference to Figure 2-116 inspired by theioe8 of IEA- ECBCS ANNEX 53, the investigation
here presented can be referred to the box relatedarge building stocks, where seasonal
consumptions are available and analyzed.

-—_— -

Time | Short Medium Long
3538 | (s, h) (wask. manth) (spason. vear)

# of bldgs
Indiidual bidg | Profies

Power [KW] eyl i .
o ]M\ Load Analysis

farge g stk \

regignal/ . Energy ( ; over a perid of time
ratona Emergy Planning| i@

analyses

Figure 2-116. Building sample dimension vs Timgdency of energy consumptions (from hourly
data to annual data)

The analysis is firstly carried out in order toidefa specific heating energy consumption indictdor
each school building. A simplified model, defineddaproposed by a previous research work
(Corgnati et al., A method for heating consumpti@sessment in existing buildings: a field survey
concerning 120 Italian schools, Energy and Buildingol. 40 pp. 801-809, 2008is applied and then
verified for the energy consumption forecast.
In particular, the investigation is carried outahgh the following steps:

1. measured data collection and analysis of heatinguroptions for each single building of the
investigated stock;
verification of the heat generation efficiency &ch analysed heating plant;
definition of actual and conventional occupancyrisaf the buildings;
definition of the energy performance indicator éaich single building
energy consumption forecast for each building amdHe building stock.

ablrwnN

Moreover, the validity of the performance indexpgweed in the former research activity is verified,
and the results of the previous investigation cdagmpare compared with the ones obtained from the
new data set consequently to energy retrofit astmnthe buildings.
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2.6.2 Database characteristics

A building sample of 103 schools is investigatedated in the Province of Torino. Diagram in Figure
2-117 shows the frequency distribution of the bogdsample on the basis of the gross heated volume.
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Figure 2-117. Frequency distribution of the builgisample on the basis of the gross heated volume

The diagram of Figure 2-117 shows that the sangpthvided within an extremely wide interval, with
heated volumes ranging from under 5000tanover 75000 th

Moreover, Figure 2-118 shows the frequency distidbuof the building sample on the basis of the
Italian conventional heating Degree Days (in acanog to the Italian Law D.P.R. 412/93), calculated
with an indoor temperature of 20 °C. All the invetl/buildings are located within the climatic zoges
(Degree Days between 2100 and 3000) and F (Degages &ver 3000), that are the two zones coldest
climatic zones in ltaly.
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Figure 2-118: Frequency distribution of the buildisample on the basis of the Italian conventional
heating Degree Days (Italian Government 1993)

As most of the buildings are located in the cityTofino (2617 °C d), more than half of the sample
falls within the area with conventional Degree Dhgsween 2600 °C d and 2700 °C d.

Diagram in Figure 2-119 shows the distributionte sample according to the type of fuel used fer th
heating system (in the case of methane, a furtivesiah into traditional and condensing boilers has
been made).
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Figure 2-119: Frequency distribution of the buildisample according to the type of fuel used for
heating system.

The data collected for each building in order tarelsterize its heating consumptions and, then, to
define the heating consumption indicator are:

building location;

geometric data (gross heated volume, floor useiidase);

monthly metered supplied energy for heating foe¢htonsecutive heating seasons;

monthly metered primary energy consumption for ingafor three successive heating seasons;
conventional heating Degree Days of building site;

measured heating Degree Days in building site &ohef the examined seasons;

conventional (standard) heat delivery hours ofitbating system;

actual heat delivery hours of the heating systene&eh examined season;

type of fuel for the heat generator.

As mentioned, data referring to three heating seakave been considered.

The number of conventional heating delivery hounsthe analyzed building stock has been set at
1,098 hourslyear, according to the indications tef €nergy manager on the basis of a standard
outdoor climate and a standard use of the buildig.the contrary, as regards the actual delivery
hours, they were monitored by the energy managerara example, Figure 2-120 presents their
frequency distribution for the sample with referema the first analyzed heating season.
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Figure 2-120: Frequency distribution of the buildisample on the basis of the actual number of
delivery hours for the first analysed heating seaso
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The monthly efficiency of the heat generator hasnbealculated for every building through the
following equation:
E

—_ S

E

P
where:
n = average monthly efficiency of the heat generator
Es = Monthly metered supplied energy;
E, = Monthly metered primary energy.

Also the average seasonal efficiency of the heaeiggor has been evaluated, using the seasonal
metered energies.

In order to verify the consistency of the meteretbgs and as a consequence of the efficiency, the
calculated monthly efficiency was checked. When 1o between monthly supplied energy and
monthly primary energy is over 0,90 (1,01 in theecaf condensing boilers), the obtained efficiency
value is considered as not reliable, due to a fmebaalfunction in the heat recording system. Tiee p
chart in Figure 2-121 shows the consistency ofbddi efficiency data.

esEmated
%

consisient
1%

Figure 2-121: Consistency of reliable efficiencyaleelated to the efficiency of the heat generator

Only 9% of the data presents an anomalous effigisatue. For the cases when the efficiency value
resulted as unreliable, some standard efficiendyega obtained from an analysis performed on the
collected data, have been defined: typically 0,88 tfaditional systems, and 0,96 for condensing
boilers have been used.

2.6.3 Method

In order to carry out a comparison among data obthifrom different buildings and/or different
seasons, it is necessary to define an energy tadicaferred to the heated volume and which
neutralizes the effect of any changes among bg&lin the heat delivery period, and climate. Tg thi
aim, a “conventional” energy performance indicataiready used in the previous study, has been
evaluated: such indicator is defined as the ragtwben the metered energy supplied by the heat
generator (QP) and the gross heated volume (\Mrrexd to the conventional heating Degree Days of
the site (DDR), and to the conventional hours of heat supply: (d

op, = PP
°7'v DD, d,

(4)

where:
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DD, = actual heating Degree Days of the site;
d, = actual heat delivery hours during the heatirases;
QP = seasonal metered energy supplied by the keatator.

Such indicator has been calculated for each buyjldieferring to climatic conditions and conventibna
hours of heat supply during each considered hea#agon, in order to make possible comparisons at
the same conditions, to show trends, or to highlkgtomalies.

As an example, Figure 2-122 describes the trentieindicators calculated each heating season for
building n° 1.

Building n° 1

&
S

w
&

w
=3

N
&

QPs. [KWh/m®]
a 8

o

o

1° season

2° season

3° season

mean value

Heating season

Figure 2-122: Trend of the “conventional” energyrfi@mance indicator QB calculated each
consecutive heating season for building n° 1

The diagram shows that the indicator presents dlities same value for season 1 and 3. On the
contrary, the consumption indicator for the heatsggson 2 is significantly higher: even if during
season 2 the climate was far less rigorous thaal (#uwas a “warm” winter), in practice such
climatic variation did not lead to a proportionacdease in consumption, as highlighted by the high
value of conventional consumption. This may be tdugoor control strategies on the heating systems,
a reduced efficiency of the systems with low-load®]/or to tendency in slightly increasing the imdo
temperature set-points with increasing of outdeargerature.

2.6.4 Results and discussion

Figure 2-123 shows the frequency distribution ef ctbnsumption indicator for a representative season
of previous research activity, and for a represergaeason of current research activity (so dfier
application of energy retrofit actions on the bunlgs).
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Figure 2-123: Frequency distribution of the “conviemal” energy performance indicator QRfor a
representative season of the previous researchigctind of the current research activity

This figure confirms that the retrofit interventsoplanned after the first investigation campaigneha
evidently led to an energy efficiency improvemanthe whole sample. In fact, while in the firsteas
about 90% of the buildings had a consumption irtdichelow 80 kWh/rf in the second case about
85% of the buildings show a consumption indicatetoty 40 kWh/nt: exactly half of the value
obtained from the previous study.

Moreover, in the first case the average consumptiditator value was 38 kWhAnwhile this value

is now 29 kWh/m Assuming an average room height of 3 m, the @ee@nsumption indicator
value referred to the surface unit is 87 kWh/mvhich is definitely lower than the value of 115
kWh/n? obtained from the previous estimation.

The diagram in Figure 2-124 shows the comparisamwden the actual measured value and the
performance indicator value for every building.

The performance indicator has been than used &xdst the consumption of the following heating
season. As a consequence, it is necessary to medife reference value according to the actual
conditions of the analyzed season, and the follgwirequation has been used:

— [_EDa a
QPSC* _st,c DDC B(let

where QR.is the energy performance indicator for each bogddetermined as previously described.

Mensuted whacific hewt supply [KWhin']

-] 100 120
Comecied comventional specilic heat supply [k\'lllm’]

Figure 2-124: Comparison between the actual meabuvedue and foreseen valued from QP
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The figure confirms the quite good level of accyraf the energy performance indicator: even if a
simple model has been used, the determinationiceft value Ris 0,74.

The trend line does not coincide with the biseabrthe diagram, which means that the energy
performance indicator slightly overestimates thei@oconsumption value.

One of the main physical reason for such resuhas the variables describing the model do not take
into account heat gains. Nevertheless, a littlerestemation can be considered acceptable when the
consumption forecast is used for “energy contract’boses because it provides a margin of safety of
primary importance.

2.6.5 Conclusions

The present study, focused on school buildings,edinat analyzing actual heating energy
consumptions and evaluating an energy performamtieator for consumption analysis and forecast
of the examined building stock.

The heating energy consumption has been investigitstly through a comparison between the
consumptions obtained from a previous study ors#tmee buildings and the ones related to the current
situation. This analysis has demonstrated that éhergy re-qualification actions planned and
implemented on the buildings according to the tesofl the previous study, led to an improvement in
the energy quality of the analyzed building block.

Then the energy indicator, based on a normalizatfahe seasonal metered energy consumptions, has
been calculated and verified. The indicator resulieliable, both for the description of the actual
consumption in comparison with reference valued,fanthe future consumption forecast. Moreover,
it turned out to be useful to identify referencduea for the heating consumption of this school
building stock.

Overall, this paper presents a model, indicatoxs @ammethod for energy consumption analysis and
prediction in a public building stock. In this cert an accurate energy consumption predictionng ve
important in order to allocate in advance neceskargs for energy retrofit of schools. Thereforesit
important that these models are easy to understarall those involved in management of analyzed
building stock. In school building stock, where tieg is the main energy use, consumption analysis
involve a not excessively complex system, so pteEgicaccuracy could be higher than in consumption
analysis of building stock where, for example, gt adaptive actions are more free.
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2.7 Experience 7: Building energy performance evaluatio using daily consumption data in
nine individual office buildings in Spain

(Stoyan Danov, Jordi Carbonell, Jordi Cipriano. CIMNE, Spain)

2.7.1  Subject of the work / Abstract

The subject of work is the analysis of the energyfggmance of nine office buildings in Spain,
corresponding to the climatic zone “D” according ttee Spanish Building Technical Code. The
dimensions of the buildings vary between 340 arzD482.

A method for determining the total heat loss cagdfit, the effective heat capacity and the netrsola
gain of a building is presented. The method usksear regressions approach based on daily energy
consumption combined with readily available metéagiwal data.

The effective heat capacity of the building is ea#d by correlating the energy consumption and
outdoor temperature changes from the previous Tag.net solar gain of the building is assessed by
analyzing the data separated into groups by anmafuthaily solar irradiation. Corrected total heatdo
coefficient is determined by explicitly including the building’s energy balance the accumulated hea
and the solar gain.

The method has been applied to the analysis ofpuibéic buildings in Spain. An improvement of the
estimated heat loss coefficient due to the cowastiis observed. The effective heat capacity
normalized by the building area is shown to be efuldndicator of the building operation, detecting
continuous or intermittent heating.

The estimated parameters in this study can englgleifc benchmarking, detecting opportunities for
energy savings and evaluating their potential. Wl increasing implementation of smart metering
technologies, the method is promising for applaato the analysis of large building stocks.

2.7.2  Aim of the work

In order to improve the energy efficiency in exigtbuildings and to design appropriate energy-gsavin
measures, it is important to analyze separatelynflieence of the building (envelope, energy sysem

from the influence of the human behavior factoesafmg/ventilating choice, system control).

Ideally, the analysis needs to establish weightaith of the following key factors in the building’s
total energy consumption: envelope quality; theldiog use activities; the systems quality and
control; occupant behavior factors such as heaimd) ventilating choice. This detailed knowledge
requires expensive monitoring which, in practice,only possible in a small fraction of the total
existing building stock due to cost criteria.

Another approach is the use of energy indicatossjally calculated from billing data sources.
Indicators are used for benchmarking to evaluate ghvings potential and also the impact of
efficiency measures already applied. In this ctse]evel of detail of the analysis depends ontype

of indicators used and on how well they are ableefresent the aforementioned key factors for the
energy consumption. Furthermore, benchmarking andiefing can be integrated in the same analysis
by studying the characteristic building factorshnattificial neural network (ANN) techniques [1].

A commonly used indicator for the combined perfanoe of the building and its occupants is the
energy use intensity (EUI), or energy consumpti@n pquare meter. For characterization of the
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building envelope, the total heat loss coefficielt,, ) including both the transmission and ventilation
losses of the building, is widely used [2],[3],[4].

The K

of the data for analysis increases, to the levelusihg daily data for example, the dynamic
performance deserves more attention. One of the weamodel the dynamic effects is the effective
heat capacity, defined in [5] as the part of th@ltdeat capacity of a building component that
participates in dynamic heat exchange with therenwment. In the same reference different analytical
models for determining this are presented, all bichy require information about the building element
properties and dimensions.

The present study aims to analyze building energyopmance from the starting point of energy
consumption data availability without detailed kdeslge about the building, calculating the effective
heat capacity and the net solar gain of the buldin

ot IS @ quantification of the steady state thermalgomance of the building. As the frequency

2.7.3 Data used and database characteristics

The study has been performed on data from 9 pbiicings in Spain corresponding to the climatic
zone “D” according to the Spanish Building CodeeThata has been obtained, from monitoring in the
period of April 2009 to March 2010, under a comrmedrcontract with privacy clauses which impede
the citation of the exact location. Consequertthg, data is used here only as an illustration ef th
methodology.

The original database contains data with 15 minsdéenpling frequency, with separation of
consumption of fuel for heating and total electyictconsumption of the building. The energy
consumption information has been complemented re#ldily available meteorological information at
10 minute frequency, taken from nearby meteorokiggtations. From these data the outdoor
temperature and the global solar irradiation omizbntal surface have been used. In some cases the
physical distance from the building to the meteogatal station is up to 20 km which can give place
to some micro-climatic deviations for the real dinbs.

Additionally, information about the typical numbef people occupying the building each hour is
available from a questionnaire filled by the builglioperator.

Although the original database contains data withhér frequency, daily integrated values for the
energy consumption and the solar irradiation, aretage outdoor temperature have been used in the
analysis. The reason is that daily data is betteretated with respect to dynamic and solar raoiati
effects than higher frequency data due to the thkinertia of the building. The data with higher
frequency in this study is used only for more ipitheview of the building use in order to explair th
results from the daily data analysis.

2.7.4 Method

The global energy balance over a building is givgn

Qloss + Qdyn = th + Qel + Qp + Qsol (1)
Where Q.. is the energy loss through the building envelopéransmission and ventilatio),, is

the dynamically stored/released he@},is the energy provided from the heating system. [Eisé
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three terms on the right are the heat gains respgctrom electric use Q,,), metabolic energy from
people Q,) and solar energy gain€),). Both parts of the equation represent the totakihg need

of the building for the studied period)).
For daily energy balanc, cannot be neglected, as the time constant of Ingidiis in the

magnitude of days. Thus dependence on the predayls operation and outside temperature exists.

2.7.5 Determining of the total heat loss coefficient

The heat losses of the building are proportiondghé&inside-outside temperature difference, soave c
re-arrange equation (1) in terms of power as:

Ktot (T| _To) = th + Qel + Qp + Qsol - Qdyn (2)
Where K
losses,T; and T, are respectively the average internal and extéenaperatures.

ot 1S the total heat loss coefficient of the buildingluding both transmission and ventilation

Using daily data for the energy consumption fortimega electricity, occupation and average outside
temperature, thd,, can be determined from (2) by energy signature,Fgure 2. This technique

does not imply the knowledge of the internal terapme (implicitly supposed constant) and evaluates
the heating loss in function only of the outsideperature. As is usual in this kind of modelingy,

and Qdyn are not known, so these terms are omitted lpgdis estimated from the known terms

instead of the real heat losses. As a result, &z loss coefficient is more imprecise and does not
reflect the real characteristics of the envelopecddinting for the dynamic effect and the solar gain
will lead to improved linearity of the relation beten heat loss and temperature, to obtaining of

higher determination coefficienfR?) for the regression, and thus more precise estisnaitK,, .

2.7.6  Evaluation of the dynamic effect

The dynamic contribution to the total energy foatireg is due to the thermal inertia of the building
and on a daily basis depends on the variationetlerage building mass temperature with respect to
previous days.

As the average building mass temperature variatannot be determined with the available
information (energy consumption, occupation, maikagjical data), the dynamic effect can be
evaluated with respect to the variation of the idetsemperature.

The dynamic effect on the heating energy demanetleged to the effective heat capacity of the
building C_, and can be determined from:

Qdyn = Ceff (Tok _Tok_l) (3)
whereT* andT X! are the average outside temperature of the aatubprevious day respectively.

The effective heat capacity is a quantificatiorire total heat capacity of the building that p@pttes

in the dynamic heat exchange between building awitanment. The effective heat capacity can be
defined and calculated on basis of admittance[@], The admittance is the quotient of the heax flu
and the temperature oscillation at one surfacelfilding component. The effective heat capacity of
the component is determined as the amplitude chdmaittance divided by the oscillation frequency.
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Applied to the overall building using daily intetgd data, the admittance can be approximated from
the oscillation of the heating load in the 24h @érito the oscillation of the average outside
temperature for the same period.

Y='k_Qk—l
Tk_Tk—l
o1 @)

Dividing the admittance from (4) by the oscillatifrequency (1/24h) we obtain the effective heat
capacity of the building:

B Qk _Qk—l
o o (5)

where Q! and Q* represent the total heating need (including endrgyn heating system and
gains) for two consecutive days, k-1 and k, catealdrom (1), without considering the dynamic and

solar terms.
Equation (5) is not an exact equation afyg is determined inversely as the slope of the regwas

line between the nominator and denominator, sear€i@-125. It is a negative slope line, ideally
passing through the centre of the coordinate systenorder to evaluat€_, considering only the

influence from the previous day, from the datahsate been excluded the days for which the energy
consumption in the previous days is very low opaigl, for example on Mondays or on the first day

after the holidays which reflect the dynamic heffi¢a@ of more than one day period. These days
should be analysed separately.

Effective Heat Capacity
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Figure 2-125: Plot for determining af,, (Building #7)

Analysis of the building solar gain

In the present work, centered in the analysis ef biilding energy use from daily data energy
consumption data and without detailed building dpsion, the focus has been placed on the relation
between the global daily solar irradiation on aizantal surface and the total heating demand of the
building.

The solar energy gain contributes to the heatirad land is implicitly reflected in the energy
requirements for heating. In thermally controlladidings it can be supposed that higher solar gain
reduces the heating necessity of the building. Wtter, or nearly zero solar gain, all the necegssar
heating is covered by the consumed commerciallyplgegh energy. On the other hand, solar gain is
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related to the available global solar irradiatiarring the day and can be expected to increase with
higher solar irradiation.

From the point of view of analysis of data integthin a 24h period (including day and night), with
the increased amount of daily irradiation the dalirsolar gain will increase. But, this effect wik
partly offset by the increased radiation lossesnduthe night due to the lower sky temperaturerdyri
clear nights, supposing that the coincidence daraliays with clear nights within 24h period is hygh
probable. These opposite effects will finally gipkace to a net solar gain or loss, which is the
difference between the energy gained during theatad/ the increased losses during the night. The
result for each particular building will dependitslocation, design, orientation and surroundings.

In order to evaluate the influence of the solaadration on the total heat demand, the whole daita s
has been divided in four subsets which corresportifterent ranges of the daily solar irradiatios a
shown below.

Set 0: Solar Irradiation level < 800 Wh/m2

Set 1: 80(< Solar Irradiation level < 2000 Wh/m2

Set 2: 200& Solar Irradiation level < 3200 Wh/m2

Set 3: Solar Irradiation level 3200 Wh/m2

The considerations for deciding the division iringes have been first to assure sufficient datatgoi
within each range, and secondly, to provide swfitistep-change in the solar irradiation levelcas t
assure appreciable differences in the output oatiaysis.

For each of the subsets, a linear regression battheeheat load and the outdoor temperature has bee
obtained. In order to smooth extraneous effecthénregressions and impose physical meaning by
fixing zero energy consumption for the same outdeoiperature for all of the subsets, the regression
lines are generated with the constraint of fixingg@nmon point of the regression lines on the
temperature axis. As a common point, the crosstpithe regression line obtained with the whole
set of data points has been imposed, as showmyurd-2-126.

The particular arrangement of the regression lisiesws the global building energy performance
response to the solar irradiation level and remtsse sort of building “solar signature”.

4000
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o

= y0=-166.87 x0 + 3744.66, R2=0.674
~ = ¥1=-153.81 x1 + 3451.59; R2=0.692
~ y2=-146.01 x2 + 3276.36, R2=0.788
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Figure 2-126: Total heat loss coefficient deterndity energy signature from sub-sets of data for
different levels of solar irradiation with fixed monon point.(Building #3)
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For the estimation of the solar gain of the buiidihe set of data with minimal solar irradiatiore{®
can be considered as the base set for which the gain is zero. All the other sets (Setl to Sat8)
expected to have higher solar gain, resultingielodemand of energy for heating.

This means that ideally the regression lines ofsigts with higher irradiation level will be situdtm

the graphic lower than those with lower irradiatievel, as in Figure 2-126. In the case that the
regression line of Set0 is situated below the ofi®ts’ lines, this means that with higher irradiati
level the building requires more energy for heatrghat the net solar gain is negative.

The daily net solar gain of the building can nowds¢éimated (see Figure 2-126) from the difference
between the regression line of Set0 and the litketorresponding data set (SetX) to which thiydai
data belongs, calculated for the average outdoapéeature.

Qsol = Qseto - QsetX (6)

2.7.7 Results and discussion

Total heat loss coefficient

The total heat loss coefficient for the 9 buildirgss been calculated from (2) by linear regression
three ways: i) without considering the dynamic a&othr terms (without correction); ii) considering
only the dynamic heat effect calculated from eq. (@ynamic correction only K. )), and iii)

considering the dynamic and solar heat effectautatied respectively from eg. (3) and (6) (dynamic +
solar correction K:.)). The results are presented in Table 2-32 cdledlgper square metre of

tot
tot
building area in order to allow comparison betwtem.

Table 2-32: Values oK,
(b) with dynamic correction only; (¢) with dynanaad solar correction.

and R determined from (a) the initially available dati@heut correction;

without correction ~ dynamic correction only  dynamic + solar correction difference

Building K tot R? Kiot* R K ot™* R 2 (Kiot™- K o)/ Kot
[W/m2K] [-] [Wim2K] [-] [W/m2K] [-] [%]
#1 2,111 0,57 2,202 0,59 2,319 0,73 9,86%
#2 1,586 0,72 1,715 0,77 1,720 0,77 8,45%
#3 0,927 0,48 0,958 0,52 0,891 0,53 -3,86%
#4 0,801 0,38 0,940 0,42 0,880 0,40 9,88%
#5 1,183 0,38 1,209 0,40 1,268 0,47 7,21%
#6 0,758 0,59 0,786 0,65 0,752 0,69 -0,79%
#7 1,231 0,68 1,348 0,75 1,328 0,76 7,91%
#38 1,633 0,68 1,715 0,73 1,685 0,73 3,19%
#9 1,450 0,75 1,558 0,77 1,729 0,80 19,21%

It can be observed that in practically all of tteses the dynamic correction leads to an improvement

of the regression from the perspective of the dditeation coefficient R*) values. The addition of
the solar correction further improves the regressiquality, except in the case of building #4, vehe

the R? slightly descends in comparison to tk¢, determined with the dynamic correction only.
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The regressions obtained with the dynamic and sodarections show increased linearity of the
relationship between the heating need and the outtemperature, as expected. The observed
corrections of the total heat loss coefficienthie majority of cases lead to an increase of thaeval
within the range of 10%, except for building #9 when increase of 19% due to the correction is
obtained

Effective heat capacity

The quantity of dynamic heat accumulated and rett&®om the building depends on the magnitude
of the surrounding temperature variation and thiéitalof the building to exchange heat with the
environment. It is limited to the heat capacitytled materials from which the building is built aisd
always lower than this, due to temperature cyatingr time.

The C,, in this work is obtained by correlating daily igtated values and reflects how the building

heat consumption is affected by the changes optbeious day’s average external temperature. If the
building is intermittently heated during the daigriod, it is exposed to larger temperature vamies]
which are related to the external temperature th@gmount of dynamic heat is expected to be larger
This has been checked using the available higleguémcy consumption data and the calcula@gd

values for the buildings.

Buildings #1, #4, #7, #8 and #9 present clearlgrimittent heating pattern where stopping of the
heating system or reducing its operation to minimduring the non-working hours can be observed.
Building #2 can also be classified as having intdemt heating although exceptions for some weeks
exist where the heating has not been stopped dthiegright. The control pattern of building #5
presents some irregularities but on the generdbdoe classified as continuous. Figure 2-127 shows
the hourly consumption profiles of heating enerdyfaur of the buildings, superposing 6 typical
weekly profiles for each. The profiles represemt tieating mode of the buildings and are related to
the building use. As can be observed from the gaome of the buildings have well defined control
patterns, while others have more irregular opematihe profiles have been evaluated qualitatively,
roughly classifying the heating mode as intermtt@mcontinuous.
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Figure 2-127: Superposed hourly profiles of fuehgamption for heating: six typical weeks for each
building are represented. a), b): intermittent cgteon; ¢), d) continuous operation

In order to obtain comparable values for the arelyduildings, the effective heat capacity,
determined from equation (4) has been normalizedthey net building area. Cross-comparison
between theC_, normalized per building area and the detectedrigeatode is presented in Table 2-

33. The obtained results for tig,, for intermittently heated buildings are considéydtigher (3 to 5
times higher) than those for continuously heateittlimgs. This shows clearly that ti@,, can be

used as indicator for the heating mode of the mgtdcontinuous or intermittent.

Table 2-33: Summary results.

Building Net area Av.daily EUI Kiot*™* Solar fraction Ceif Heating mode
[m2] [Whim2.day] [W/m2K] [%] [Wh/m2K] [-]

#1 2470 659,13 2,319 -3,79% 22,78 intermittent
#2 1969 598,18 1,720 1,85% 26,28 intermittent
#3 340 348,29 0,891 8,41% 4,85 continuous
#4 3845 474,64 0,880 -6,31% 24,26 intermittent
#5 500 389,74 1,268 18,69% 6,61 continuous
#6 516 622,50 0,752 3,91% 6,76 continuous
#7 2773 468,65 1,328 -2,09% 20,58 intermittent
#8 1770 666,37 1,685 -4,78% 18,20 intermittent
#9 4817 416,07 1,729 6,79% 28,91 intermittent

Analysis by level of solar irradiation

The results from the analysis by level of solaadiation are presented in Table 2-34. Here we ean s
the corrected total heat loss coefficient, deteeairby introducing the daily solar gain in the
buildings’ energy balances, and the solar gairhefhiuildings for the analysed period (September —
April), calculated using the method described imp8.3.
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For the present method, the precision in determginiinthe base set with nearly zero solar gain (Set0
is crucial as it is the reference for determinirfgttee solar gain of the building and can influence
strongly the assessment. Analysis with more dataetessary in order to establish the acceptance
criteria. A minimum number of data points in thésets, or fixing minimal value of the determination
coefficient of the regression could be part of¢heeria.

Table 2-34: Ktot determined from subsets of dataddd by level of solar irradiation and
calculated solar gain of the building for the ansdyg period.

Ktot by solar irradiation level, [W/m2K]

Building Kiot seto Kiot sett Kiot set2 Kiot set3 Solar gain
#1 2,31 2,60 2,48 21 -3,79%
#2 1,65 1,63 1,53 1,63 1,85%
#3 1,08 1,04 0,99 0,81 8,41%
#4 0,93 1,03 0,98 0,95 -6,31%
#5 1,65 1,58 1,22 0,81 18,69%
#6 0,41 0,41 0,39 0,36 3,91%
#7 1,35 1,40 1,49 1,24 -2,09%
#8 1,69 1,77 1,77 1,88 -4,78%
#9 1,60 1,52 1,44 1,33 6,79%

The results of the analysis in this study show Hyatising daily integrated data for obtaining tbelt
heat transfer coefficien,,, its value, in general, decreases with the increfske solar irradiation;

and that the heating demand is lower when the swéatiation is higher, which is logical because th
solar gain contributes to the heating.

2.7.8 Conclusions

The present work suggests a simple linear regnedssed method for determining the building’s
total heat loss coefficient, effective heat capaemd solar gain by using daily energy consumption
data. Consequently, introducing the calculated thioand solar gain terms explicitly into the ovéral
energy balance of the building enables an imprduetal heat loss coefficient to be determined. K ha
been observed that the dynamic heat correctiorsléadn improvement of the regression between
energy consumption and outdoor temperature infahecases studied. The addition of the solar gain
correction further improves the regressions, exdéepione of the buildings where the regression’s
determination coefficient slightly decreases.

The analysis of the detailed hourly consumptiorfilref the buildings showed that the thus obtained
effective heat capacity, normalised by the buildinga, is closely related to the building’s openai
pattern and is a clear indicator for intermittentcontinuous heating. Intermittently heated buiggin
present effective heat capacity values from 3 tim®s higher than those heated continuously.

The three parameters - the corrected total hestdosfficient, the effective heat capacity andsblar
gain - can be used as performance indicators fecip benchmarking in order to detect underlying
building operational patterns with available onbilg data. In order to establish clearer criteda f
interpreting of the results, additional studies andlysis of larger number of buildings is necessar
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With the increasing application of smart meteringbuilding energy management systems and for
billing by the utility companies, daily or even htyuconsumption data is available, giving the

possibility to evaluate these energy performandécators in a large stock of buildings without any

additional measurement cost. The analysis can & fos preliminary evaluation of the energy saving

potential and development of energy saving stratefly service companies, or for development of
additional services for utility companies’ customer

2.7.9 References

[1]

2]

[3]

[4]

[5]

[6]

X. Cipriano, J. Carbonell, J. Cipriano, Monitoringd modelling energy efficiency of municipal
public buildings: case study in Catalonia regignietnational Journal of Sustainable Energy Vol.
28, Nos. 1-3, March—September 2009, 3-18.

C. Ghiaus, Experimental estimation of building gygperformance by robust regression, Energy
and Buildings 38 (2006) 582-587.

J.-U. Sjogren, S. Andersson, T. Olofsson, An apgrda evaluate the energy performance of
buildings based on incomplete monthly data, Enargy Buildings 39 (2007) 945-953.

J.-U. Sjogren, S. Andersson, T. Olofsson, Sensijtivi the total heat loss coefficient determined
by the energy signature approach to different tipeeiods and gained energy, Energy and
Buildings 41 (2009) 801-808.

Jan Akander, The ORC Method — Effective modellifigh®rmal performance of multi-layer
building components, PhD thesis, Bulletin no 180QHK- Building Technology, Stockholm,
2000.

G. Johannesson, Active heat capacity - Models Rawhmeters for Thermal Performance of
Buildings. Doctoral Dissertation, Report TVBH-1003[H, Lund, Sweden, 1981.

207



2.8 Experience 8. Experimental estimation of building eergy performance by robust
regression (Synthetic contribution)

(Christian Ghiaus. INSA, Lyon)

2.8.1  Subject of the work

The subject of work is to estimate the HVAC enecgpsumption from hourly or daily data by using
the concept of free-running temperature.

2.8.2 Aim of the work

Estimation of energy performance indexes, suclhadeating curve or the energy signature, requires
robust regression of the heating losses on theooutémperature. The solution proposed in this pape
is to use the range between the 1st and the 3mdilguz the quartile — quartile (g-q) plot to cheit

the heating losses and the outdoor temperature theveame distribution and, if yes, to perform the
regression in this range of the g-q plot. The iteisuh model that conserves its prediction perforcea

for data sets of the outdoor temperature diffeoénhose used for parameter identification. Theusib
model gives the overall heat transfer coefficientl ahe base temperature, and it may be used to
estimate the energy consumption for data sets @fotlitdoor temperature coming from different
locations or time intervals.

2.8.3 Database characteristics

The database contains hourly data for one school:
e Consumed fuel energy (hourly)
» Consumed electrical energy (hourly)
* Number of occupants in the building (hourly)
» External temperature (hourly)
* Global solar irradiation (hourly)

2.8.4  Method/Methods applied for the data analysis

The energy signature of the building is relatethtooverall heat loss coefficient of the building U-
value) which is the mean thermal transmittanceufiobuilding envelope to the external environment
by conduction and by ventilation. Linear regresdiods out a relationship between two variables by
fitting a linear model to observed data. The regmsmodel of heating load as a function of outdoor
temperature and the frequency of occurrences afoouttemperature may be used to estimate the
energy consumption. The assumptions made for lireggession are that the outdoor temperature has
a normal distribution and that the heating loaa random variable of mean.

The above conditions are not satisfied in realasituns: the building is not air-conditioned at a
constant temperature for the whole range of thelamrt temperature. Consequently, the outdoor
temperatures which correspond to the heating peld@d not have a normal distribution.

A robust regression based on quantile — quantdé iplproposed to mitigate this problem (quantiles

indicate the number of elements of a random vagittidt are in a given range).
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2.8.5 Main results

Many modern buildings are equipped with Buildingekgy Management Systems (BEMS) that
control the indoor temperature and record the gnesgsumption and the outdoor temperature. These
data may be used to assess the energy performéribe building, such as the heating load as a
function of the outdoor temperature. This relatinay be used to evaluate the overall heat transfer
coefficient of the building represented by the slap the heating load.

2.8.6  Related publications

C. Ghiaus (2006) Experimental estimation of buidienergy performance by robust regression,
Energy and Buildings, 38, pp. 582-5987
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2.9 Experience 9: Equivalence between the load curve drihe free-running temperature in
energy estimating methods (Synthetic contribution)

(Christian Ghiaus. INSA, Lyon)
Synthetic contribution is missing

2.9.1 Related publications

C. Ghiaus (2006). Equivalence between the loadecand the free-running temperature in energy
estimating methods. Energy and Buildings 38 (2CZ)-435
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2.10 Experience 10: Mining Hidden Patterns from Real Meaured Data to Improve Building
Energy Performance (Synthetic contribution)

(Zhun (Jerry) Yu, Fariborz Haghighat)

2.10.1 Subject of the work

In order to mine hidden useful knowledge aboutdind energy performance improvement from
measured building-related data, we proposed anatidata analysis process and a systematic data
mining framework within the building engineeringrdain. For demonstration purposes, a number of
efficient data analysis methodologies were developased on the framework to account for the
interactions between building energy consumptiod & influencing factors. These methodologies
were applied to 80 Japanese residential (bothesifaghily and multi-family houses) which are located
in six different districts of Japan.

2.10.2 Aim of the work

* To develop a new data analysis methodology of &skaig reliable building energy demand
models, which are interpretable and can be easigd lbby common users without a priori
knowledge in advanced mathematics and statistics.

* To develop new data analysis methodologies foryatigdbuilding occupant behavior, such as
quantitatively identifying the effect of occupanéHavior on building energy consumption,
and identifying occupant behavior that needs tabdified.

2.10.3 Database characteristics

Number of Buildings80 residential buildings distributed in six diéat districts in Japan
House typeboth single-family and multi-family

Period Dec. 2002 to Nov. 2004

Measured dataenergy data + indoor environmental data (tempegatrelative humidity)
End usersthree-level classification

On-line databaseavailable (energy indicator: secondary energy)

2.10.4 Method/Methods applied for the data analysis

 Based on the decision tree method, a new methogdimg establishing building energy
demand predictive models was developed.

* Based on a basic data mining technique (clustdysisg a new methodology for examining
the influences of occupant behavior on building rgmeconsumption was developed.
Moreover, to deal with data inconsistencies, minemarmalization was performed as a data
preprocessing step before clustering. Grey relatignades, a measure of relevancy between
two factors, were used as weighted coefficien@iféérent attributes in cluster analysis.

» Based on three basic data mining techniques: clastalysis, classification analysis, and
association rules mining, a methodology for idemti§ and improving occupant behavior in
existing residential buildings was developed. Esd-lpads were divided into two levels (i.e.
main and sub-category), and they were used to @eclucesponding two-level user activities
(i.e. general and specific occupant behavior) galy. Cluster analysis and classification
analysis were combined to analyze the main endeagks, so as to identify energy-inefficient
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2.10.5

2.10.6
[1]

[2]

[3]

general occupant behavior. Then, association mutre mined to examine end-use loads at
both levels, so as to identify energy-inefficiepesific occupant behavior.

Main results

A new methodology for establishing building energgmand predictive models was
developed. The developed model estimates the hgilelnergy performance indexes in a rapid
and easy way. This method’s advantage lies in thktyato generate accurate predictive
models with interpretable flowchart-like tree stiwres that enable users to quickly extract
useful information. To demonstrate its applicapjlithe method was applied to estimate
residential building energy performance indexesnmmdeling building energy use intensity
(EUI) levels (either high or low). The results demtrate that the use of the decision tree
method can classify and predict building energy ainlevels accurately (93% for training
data and 92% for test data), identify and rankifigant factors of building EUI automatically.
A new methodology for examining the influences otwupant behavior on building energy
consumption was developed. To demonstrate the cayility of the proposed method, the
method was applied to a set of residential builglimgeasurement data. The results show that
the method facilitates the evaluation of buildingelgy-saving potential by improving the
behavior of building occupants, and provides mattited insights into building energy end-
use patterns associated with the occupant behavherresults obtained could help prioritize
efforts at modification of occupant behavior in erdo reduce building energy consumption,
and help improve modeling of occupant behaviorimarical simulation.

A methodology for identifying and improving occupabehavior in existing residential
buildings was developed. In order to demonstrageajiplicability, this methodology was
applied to a group of residential buildings in Japand one building with the most
comprehensive household appliances was selectigi asse building. The results show that,
for the case building, the method was able to ifletite behavior which needs to be modified,
and provide occupants with feasible recommendatismsthat they can make required
decisions. Also, a reference building can be idiedtifor the case building to evaluate its
energy-saving potential due to occupant behaviodification. The results obtained could
help building occupants to modify their behavidrereby significantly reducing building
energy consumption. Moreover, given that the predomethod is partly based on the
comparison with similar buildings, it could motieabuilding occupants to modify their
behavior.

Related publications

Z. Yu, F. Haghighat, B.C.M. Fung, H. Yoshino. A @gen tree method for building energy
demand modeling. Energy and Buildings. 42(10) (2@0 1637-1646.

Z. Yu, B.C.M. Fung, F. Haghighat, H. Yoshino, Edd/&iorofsky. A systematic procedure
to study the influence of occupant behavior onding energy consumption. Energy and
Buildings. 43(6) (2011) pp. 1409-1417.

Z. Yu, F. Haghighat, B.C.M. Fung, H. Yoshino, Edwaviorofsky. A Methodology for
identifying and improving occupant behavior in desitial buildings. To appear in Energy
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3. Statistical analysis of national building stock

3.1 Introduction

Statistical analysis of national building energynsomption is aimed to define a general overview of
the energy end use due to the construction seatonational level. Actually, the knowledge of
national building energy use has remained undegsitigated, due to a lack of information regarding
the overall characteristic. With the aim of builglistrong national databases, national agencies and
institutions (CBECS in the U.S., MOHURD in ChingABULA in Europe) have gathered real energy
use data and physical characteristics on the ratlonilding stock. Specifically, China has collatte
data of government office buildings and large-stalemmercial building [1], U.S. has built a natibna
sample database of commercial buildings [2], wherd® European countries have collected data
characterizing national building residential st¢@k

Subject of the task is to collect and subsequetlglaborate data characterizing national building
stock in order to offer a realistic interpretatioh typical building energy consumption. Different
approaches have been tested and used for the siegadiatistical analysis.

Wei, Xiao and Jiang [1] adopted two statisticalesssh methods: boxplot and key statistical
parameter of energy use data and frequency dititib@nalysis. Both these two approaches have
been presented as effective and suitable for fuamadysis and international comparison. Database
characteristics have been gathered based on régiomarnment website releases and included Gross
Floor Area (GFA) and annual electricity consumpsiqiexcluding district heating) of 4600 offices
buildings. Cluster analysis showed that the averaggonal stock electric consumption is 107
kWhe/nfa for business office buildings and 67.6 kWh@or government office buildings.

Hong and Wang [2] analyzed utility bills (monthipexgy use for electricity and natural gas) of the
CBECS U.S. sample survey and broke them down in&rgy end use for commercial building
national stock. Statistical regressions and engingemnodeling approaches were used to estimate
national end use based on consumption data. Aveeagegy consumption for the commercial
buildings in the U.S. - emerged from monthly regres models of 1518 gathered buildings - is 292.6
kWh/m?, whereof the single largest part (35.3%) is duspace heating.

The European project TABULA (Typology Approach f&uilding Stock Energy Assessment)
presented by Tala [4] and Becchio, Corgnati, Ballaand Corrado [3] aimed to create a
homogeneous database for European Residential iByilflypologies. The research tested three
statistical methods with the final goal to estim#te energy consumption of residential building
stocks and therefore, to predict the potential gnefficiency measures impact of benchmark models
at national level (singular evaluation for each dp@an country participating in the project). These
methodologies shoot for the enhancement of thengiateimpact of energy saving measures and
carbon dioxide reduction, by means of the seleatiothe more adequate energy retrofitting strategie
and interventions in existing buildings [3] [4]. Mel calculations aimed to estimate the energy gavin
potential of national residential building stoclEnérgy Balanced Method) were developed by four
countries (Denmark, Germany, Italy and Czech Repubdépresentative of main European climatic
regions, by using the national EPBD asset ratinthatk[3]. Moreover, the same modeling method
(EBM) can be possibly extended for the energy parémce assessment of the whole national
building stock.
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For each country, two levels of building retrofiesg considered: (a) standard refurbishment, apgplyin

standard national measures; (b) advanced refurleishnapplying the best national technologies
available [4]. Specifically, Italian database caméa records for more than 66.000 houses ratedscro

Piedmont region and gathered information on physidaaracteristics and calculated energy

requirements of single houses. On the base of timdEpendent variables elaborated by means of
statistical analysis (location, age, form of thdlding), a total of 84 building types (archetypes)

representative of the Italian residential buildgtgck were generated [4].

All these kind of approaches, which use statisteallysis of national building stock sample, arg/ve
effective. As a matter of fact, average predictiohgnergy consumption at national level are made
available. Public existing building energy use remained for a long time at a micro-perspectije [2
due to a lack of shared definitions and outdatéarimation [3]. Nonetheless the development and the
statistical analysis of strong national energy-d@&sets, could be one element towards a moretrobus
estimation of the overall energy consumption ofriagonal building stocks.

References (contributions to the Annex 53)
[1] Experience 1: Qingpeng Wei, He Xiao, Yi Jiang, Na#il Database of Office Building Energy
Use in China

[2] Experience 2: Tianzhen Hong, Liping Wang. The UG mmercial Buildings Energy
Consumption Survey (CBECS)

[3] Experience 3: Cristina Becchio, Stefano P. Corgrkiia Ballarini and Vinecenzo Corrado,
Energy saving potentialities by retrofitting ther&pean residential sector

[4] Experience 4: Novella Tala. National/Regional irigegion level, Single & Multifamily houses
in Italy
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3.2 Experience 1: National Database of Office Buildingenergy Use in China

(Qingpeng WEI, He XIAO, Yi JIANG. School of Architecture, Tsinghua University,
Beijing, China)

3.2.1 Introduction

There is a very limited scope survey of energy iaspublic buildings [1], instead of small scaled
investigations, case studies or scenario analysi€hina. Thus, the knowledge of public building
energy use always remains at a micro-perspectiekjrlg the understanding of overall characteristics
on a regional or national level. In order to budldtrong energy data collection system and improve
certain problems, the Ministry of Housing and Uriural Development (MOHURD) has set up a
long-term strategic plan [2] to gather and colleal energy use data of governmental office bujjdin
and large-scaled commercial buildings in dozendemfionstration provinces, cities and municipalities
from 2007. The first round data opened to the pulbks analyzed in this study. This research ofiers
realistic interpretation for office building energyse in China, studies its statistical distribution
characteristics.

The initial 24 demonstrated provinces, autonomegsons, municipalities under direct control of the
Central Government and cities with separate budigeis the central finance have distributed their
surveyed data for governmental offices and largéesc commercial building since 2007. The
surveyed data includes Gross Floor Area (GFA) andual electricity consumption (total value
including lighting, office appliances, lift, escadg, HVAC system, circulating pumps, and electrical
heating (not including heating energy use whichscomes natural gas, steam, etc., including heating
energy use of electrical heater, electrical boiletig.), and other electrical devices energy use,
excluding district heating) of each building (EWiceé DH), which have been released on regional
government website by the end of 2007 and gatheFbdse data is distinguished by region or
building primary activity, used to calculate thatsttical characteristic value (such as median or
quartile value), to analyze the dual sector feahyreluster analysis and to calculate Gini-coeéiidi

by each city what follows in this research.

3.2.2 Database characteristics

» Building activity: governmental or business offtweilding

* Energy data period: January 2007 to December 2007

» Contents: building name, building GFA, annual &leityy consumption

* Interval: annual

» Total sample number: 4600 office building in 13estor provinces (detailed info is shown in
Table 2-35)

* Online database: the local department of constmatiebsite releases the data online, but the
information is written in Chinese

» (For example, Tianjin-
http://www.tjcac.gov.cn/jzjn/detail.asp?articleiB8B&classid=1&parentid=0

Table 2-35: Summary of key data information and@eng size
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City/Province Urbar.1 Ann_ual per City Initial sampling size
population| capita GDP | HDD18 | CDD26 1 )
code - . scalé” | Total | Business| Governmental
(million) | ($USD/capita)
A 14.9 10871 2616 103 SL 136 52 84
B 12.4 12188 1648 203 SL 861 601 260
c 6.0 9655 2709 116 SL 892 228 664
D 25 6352 289 365 EL 611 241 370
E 5.4 5478 1549 286 SL 467 75 392
F 6.1 5381 1276 60 SL 315 129 186
G 4.3 6904 1684 151 Province 76 N.A® N.A
H 2.7 7759 1481 213 EL 172 N.A N.A
[ 35 3293 2135 167 EL 115 54 61
J 2.4 7415 2743 61 EL 226 N.A N.A
K 1.2 2456 495 291 L 72 N.A N.A
L 2.6 5187 605 274 EL 597 57 540
M 3.4 2971 105 469 Provincg 133 N.A N.A

Note: (1) SL: super large, the urban populatiothefcity is larger than 4 million. EL: extra larghe
urban population of the city is larger than 2 roifli L: large, the urban population is larger than 1
million. (2) N.A: Not available. Province G, M ar@gity H, J and K, there is only the total number of
office building instead of the breakdown of busgesid governmental ones separately. (3) electric
consumption includes lighting, office appliancé®, €scalator, HYAC system, circulating pumps, and
electrical heating (not including heating energg which consumes natural gas, steam, etc., ingudin
heating energy use of electrical heater, electhoder, etc.), and other electrical devices enersg.

3.2.3  Methodology

Frequency distribution

To divide the energy use data into groups and ebgbe frequency distribution features of EUI excl.
DH in 13 selected cities or provinces, the intemwwak determined as an empirical equation given by
H.A.Sturges:

K :1+|g—n

g2 , Where n=sampling size of each city or province.
At the same time, the polynomial fitting methodajsplied to approach the frequency distribution of
electricity consumption data, as shown on FiguE3@- The blank column illustrates the sampling
size within each EUI range, while the blue solitklirepresents the curve fitting using a polynomial
with 4th order.

Cluster analysis

Cluster analysis (CA) is a multivariate statistitathnique which can group the observations into
classes or clusters so that the greater the horedggesithin a group and more distinctions between
groups can be easily seen. This method can help gst a better understanding of the dependencies
existing among a set of inter-correlated variables.
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The traditional Agglomerative Hierarchical Clusteyi Method, which starts with the points as
individual clusters and, at each step, mergingdbsest pair of clusters, has been proposed in the
study to determine the reasonable classificatiomfi€e building EUI in each city or province in
China.

Samples were defined as (xi, yi) in which xi andrgfier to EUI and GFA of each building sample
respectively. The gravity of each cluster was dated according to equations below, where i
representing each building and N representing totainber of building samples. It could be

considered as a “typical building” representingrelsteristics of each cluster.
N

D (EUI, xA)
EUl, g = F—F— Equation (1)
2 A
i=1
3 (EUI, xA)
GFA, = 2—F— Equation (2)

D EUI,
i=1

3.24 Results and discussion

Boxplot

By creating box plots of annual Electricity Useedmsity excluding District Heating (EUI excl. DH),
the maximum and minimum intensity of each city myince is compared, as well as thd'agd 7%’
percentile limits, as presented in Figure 2-128 241@9.

Two significant features are summarized:

The median EUI excl. DH of City-A and City-B is dbusly higher than other cities or provinces.
While City-I is general lower than that of the atheTake a business office building for instanbe, t
median is 107.0 kWhe/(ma) in City-A and 89.8 kWhe/(fra) in City-B, which is obvious higher than
33.4 kWhe/(rfia) in City-I.

The EUI excl. DH of first-tier cities is generalghier than the one of second-tier cities; governaient

office buildings are lower than business officeldings.
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Figure 2-128: Box plot of annual electricity uséensity (excluding district heating) of governménta
office buildings in China
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Figure 2-129: Box plot of annual electricity useeinsity (excluding district heating) of businedicef
buildings in China
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Figure 2-130: Frequency distribution and polynonfitting plot of electricity use intensity (excl.
district heating) of business office building ipial cities or province

Figure 2-130 illustrates a unique distribution €gatof business office buildings’ EUI excl. DH in
China, which the majority of are centralized oveloaer energy range, while the minority of are
distributed at a higher energy range. The polynbmiave of electricity consumption data appears to
have double peaks, the phenomenon observed bastu ¢erge sample survey is defined as “Duel
Sector Model”, which exists extensively among tBecities selected in China. The following Figure
2-131 presents the frequency distribution of officéldings in two typical Climate Zones (CZ) in the
United States. The sufficient data contains 6,88i€eo building samples nationwide, which was
selected from the Commercial Buildings Energy Comstion Survey (CBECS) database [3]. The
Skewness ad Kurtosis test has been applied inttly,sand results shows that the EUI of office
buildings in the United States appears the “Riddeiased Single Peak Distribution” feature, which is
widely different from China.
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Figure 2-131: Frequency distribution and polynonfifting plot of electricity use intensity of offic
building of climate zone 1 and 3 in the United &at

Besides China and the U.S., the statistical digtidin feature of office building EUI in Japan also
captures our concerns. The Japanese Associatio®ustainable Development has developed the
Database of Energy Consumption of Commercial Bogd{DECC) [4], which consists of basic
information and monthly energy consumption data4fb000 commercial buildings, including 2,339
governmental office building samples and 2,951 tess office building samples all over the country.
After the check of statistical data of DECC, a ka@f5104 valid samples are analyzed. The median
EUI of governmental office building is 85.4 kWhef(s) (only the electricity consumption, not
including heating and cooling use, such as heatléonestic hot water or steam), 146.2 of business
office building fall below the median, and the age by type is very close to the median. The result
of the Kolmogorov- Smiromov (K-S) normality testdinates a normal distribution for EUI of office
buildings in Japan, as seen in Figure 2-132.
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Figure 2-132: Normal distribution for electricityse intensity of office building in Japan

The EUI of office buildings in the U.S. and Japas lthe “Single Sector Distribution” feature instead
of the “Duel Sector Distribution” characteristics seen in China. However, slight differences exist

219



between the U.S. and Japan. The former shows R&kewness, but the latter one shows a normal
curve. The order of EUI from smallest to largestGkina, Japan and U.S. What needs to be
emphasized is that the EUI in office buildings ihita does not include district heating but does

include some packaged electrical heating equipinetgad.

Cluster analysis
Typical results of the cluster analysis in two tghi cities are shown in Figure 2-133. Several

conclusions can be summarized, including:

Two clusters in each city or province were ideatifbased on the analysis, which confirms the simila
phenomenon on frequency distribution analysis. dis&ance of two gravities illustrates the differenc
of two clusters, and the gravity itself represehe&senergy intensity of the cluster.

The gravity of first-tier cities is usually largéran that of second-tier cities. The gravity of llieu
clusters in each city is shown in Table 2-36. Fstance, the two cluster gravities of businesceffi
buildings in city-A is (39, 95.1) and (122, 117.@kile the two gravities of city-F are (14, 61.8)da
(58, 65.3), the first figure represents GFA, aralltiter one refers to EUL.

The gravity of government office buildings is uduamaller than that of business office buildings,
shown in Table 2-36, which means that governmefiteohbuildings are smaller and less energy

intense consumers than business office buildings.

200 200
a Cluster 2 o a Cluster 2
o Cluster 1 . o Cluster1
150 el 150 a * Gl
= AG2 A — A
. R E A B
100 o / . A
£ Y 3100 ¢ SRR
E OO ’ ’?OO o é i3 ﬁ &
L P N
G 50 el 0 °° X ogp | cat®e C e
08068 60(9 o @] °© c;) ", Soa 4
] [e) |
0 .- F SIS .
© @J@b S oog%o
0 50 100 150 200 0 '
0 50 100 150 200

EUI (kWhe/(m?2.a))

(a-1) City A-84 business office building

EUI(KWhe/(m2.a))

(a-2) Chy54 government office building
200

200

s Cluster 2 a Cluster 2
o Cluster1 o Cluster 1

~ 150 r °G1 150 ¢ * Gl

E 1G2 & 1G2

@ &

g 100 . 3100 ¢

< “ < :

LL A A R o A

© 50 AA ﬁAA/ﬁ ? A & © 0 1 AA A

0 OOmﬁ)ﬁ ©° 0 . |
0 50 100 150 200 0 50 100 150 200

EUI (KWhe/(m2.a))
(b-1) City L-53 business office building

EUI (kWhe/(m2.a))
(b-2) City498 government office building



Figure 2-133: Cluster Analysis of EUI excl. DH afdiness and governmental office building in

typical cities

Table 2-36: Gravity of clusters in each city or pirce

City A B C D E

Indicator BO GO BO GO BO GO BO GO BO GO

GFA thous.n 39 27 25 3 10 4 37 3 3 5
Cluster 1 .
! [E)ﬁ' el Whel(nf.a) 951 658 93.6 804 68.9 653 625 33.5 59.6 48.2
GFA thous.d 122 75 97 31 51 58 118 36 33 25
Cluster 2 .

u Eﬁ' excl |\ Whel(nh.a) 1172 72.4 149.8 87.5 70.0 61.6 714 37.8 59.0 59.3
City | L F G K J M
Indicator BO GO BO GO BO GO O O GO O

GFA thous. 20 3 16 4 14 4 7 4 3 7

Cluster 1 .
uster Eﬁ' el Whel(nf.a) 509 387 561 385 61.8 52.8 84.0 48.7 355 39.0
GFA thous. 51 5 45 17 58 14 28 26 13 13

Cluster 2 .
uster Eﬁ' el Whel(nf.a) 788 49.3 809 595 653 68.6 121.7 71.0 58.3 69.8

3.2.5 Conclusions

This is the first chance to collect such a largeoamh of office building energy use survey data in
several cities in China. Based on those samplesEthl excl. DH was analyzed in typical cities in

China. Take city-A for example, the most well-deyedd city in China, the range of business office
building EUl was from 62.1 to 166.9 kWhef@), with an average of 107.0 kWhe/(m2.a); and from
23.0 to 136.6 kWhe/(m2.a), with an average of &\Mhe/(nf.a) for government office buildings.

A frequency distribution analysis, as well as polymal fitting method was conducted. It was found
that the EUI of office buildings in China have ague “Dual Sector” characteristic, which means a
large proportion of buildings distributed at th@ga with smaller EUI while there always existing a
small proportion of buildings with a higher EUI &y This feature was definitely different from the
U.S and Japan. By analyzing national CBECS suratg,dhe EUI frequency distribution in the U.S.
was found to be right-skewed single-peak. While Eidl distribution in Japan, based on DECC
investigation data, fitted normal distribution.

Furthermore, cluster analysis of “GFA” together WHEUI” for office buildings in China was
considered. Two clusters in each city or provinteChina were identified based on the traditional
Agglomerative Hierarchical Clustering Method. It svbound that the gravity of first-tier cities is
usually higher than second-tier cities and busiregBses are higher than government offices. The
slope and distance between two gravities was @iftefrom each city or province, reflecting the
interregional disparity in China.
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Due to the national database of office building€mna only provides the GFA and annual electricity
consumption, it is very difficult to study the o@ant behavior’'s impact through statistical research
However, the statistical research method usedigghper is effective and suitable for application.
Two key methods can be adopted in the future aisatysinternational comparison: Boxplot and key
statistical parameter of energy use data. Due tst miothe national energy distribution is not nokma
distribution, thus, average are not suitable famparison. Five key statistical parameter, including
median, 3/4 quartile, 1/4 quartile, maximum and imim are more objective to depict the
distribution feature of the data. Boxplots like @hig 2-128 and Figure 2-129 is clear and
comprehensive to illustrate those five parameters.

Frequency distribution analysis. Huge differences appeared after comparing the frequency
distribution of China, Japan and U.S. For undeditap the regional or national statistical feature,
frequency distribution analysis can be used. Ségaatistic software has the function of Kolmogorov
Smiromov (K-S) normality test, such as SPSS 13,@&t&®
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3.3 Experience 2: The U.S. Commercial Buildings EnergZonsumption Survey

(Tianzhen Hong, Liping Wang. Lawrence Berkeley Natinal Laboratory, USA)

3.3.1 Introduction

Although no one building type dominates the commaéitauildings sector in the US, office buildings
are the most common and account for more than 80QQildings or 17 percent of total commercial
buildings. Offices comprised more than 12 billioquare feet of floor space, 17 percent of total
commercial floor space, the most of any buildingetyThe aim of the work is to describe the data
analysis method employed by the CBECS 2003 that titity bills (monthly energy use) and broke
them down into energy end uses for office buildings

3.3.2 Database characteristics

CBECS is a national sample survey, developed byJtlse Energy Information Administration, that
collects information on the stock of U.S. commdrdimildings, their energy-related building
characteristics, and their energy consumption axmerditures. Commercial buildings include all
buildings in which at least half of the floor spaseised for a purpose that is not residential,gtdal,

or agricultural, so they include building typestth@aght not traditionally be considered "commergial
such as schools, correctional institutions, anddimgs used for religious worship. The building
survey covers many topics — building size and og&ership and occupancy; energy sources, uses,
and equipment; energy consumption and cost. The@3Btwas first conducted in 1979; the eighth,
and most recent survey, was conducted in 2003. 22 CBECS interviews will be conducted
between April 2013 and September 2013. CBECS isently conducted on a quadrennial basis. The
sample size is historically in the range of 50007600 buildings across the country which were
statistically sampled and then weighted to repreten entire stock of commercial buildings in the
U.S. For CBECS 2012, the overall building sampke $& increased to 8400 buildings. There are 878
office buildings surveyed in the 2003 CBECS.

3.33 Method

The energy end-use consumption tables for 2003 CBp@vide estimates of the amount of

electricity, natural gas, fuel oil, and districtabeused for ten end uses: space heating, cooling,
ventilation, water heating, lighting, cooking, tig&ration, personal computers, office equipment
(including servers), and other uses. There arelfasit steps in the end-use estimation process:

* Regressions of monthly consumption on degree-dayestablish reference temperatures for
the engineering models,

» Engineering modeling by end use,

» Cross-sectional regressions to calibrate the eegimg estimates and account for additional
energy uses, and

» Reconciliation of the end-use estimates to the CBIfal building energy consumption.

Monthly Regression Model

Monthly consumption data were available for 1,51BECS buildings for electricity and 1,021
buildings for natural gas in the 2003 building séespThese data allow us to analyze the dependence
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of consumption on temperature. The degree-day tereme calculated for the periods defined by the
actual meter-read dates each month for each casereBults of the analysis determine appropriate
degree-day bases for modeling heating and cootiegyg use.

For each of the monthly data cases, we fit a mofitde form

Ym =0n + Bh hm(rh) + Bc Q"I”I(TC) + €m

Where
* Y, =consumption per day for month m
+ T, = heating degree-day basis that maximizes the seigne's R
« 1. = cooling degree-day basis that maximizes the ssipa’s R
* hy(Tty) = heating degree-days per day bas®r month m
* cm(Te) = cooling degree-days per day baséor month m
e &, =residual error
*  Om, PBn Bc = regression coefficients

The regression iteratively searches for the dedegebases;, andt. that give the best’Rand uses the
corresponding coefficients,,, B, B¢, from the regression with these bases. Theseharenaximum
likelihood estimates.

Engineering Models for End Use Estimates

The engineering end-use models in the end-use a&stim procedure were from ASHRAE,
llluminating Engineering Society of North AmericdEENA), and other standard engineering
handbooks. Parameter values came from these hakellaal from large-scale field studies of
commercial buildings.

a) Space Heating and Cooling

The heating and cooling models estimate the eneogygumption of heating systems (primary and
secondary) and cooling systems for all energy ssurthe models account for building heat loss (or
gain) as a function of the building’s weighted ag® conductance and heating (or cooling) degree
days. The model accounts for ventilation heat (osgain) as a function of the volume of exterrial a
brought into a building each day, the temperatifferénce between the outside air and the inside ai
and the heat capacity of air. Starting with CBEGfrmation on the equipment type and estimated
percentage of heated or cooled floor space, theem@dies on average estimates for equipment
efficiency, and on calculations for conduction aedtilation losses (or gains).

To estimate heating and cooling consumption, thggnerering sub-models make use of degree-days.
Generally, the form of degree-day calculationssisadlows:

Heating = Heat Loss Coefficient * HDD / Efficiengyiing

Where
 HDD is a term for heating degree-days
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» Heat Loss Coefficient is a term that encompassedilagon and conductive losses for a
building
» EfficienCyheaingiS heating efficiency

For cooling, cooling degree-days are used, alorij wooling equipment efficiencies. Also, because
outdoor temperature is higher than the set indeoiperature, infiltration and conductive ‘losses’
result in net gains that increase load.

By incorporating combining the HDD and CDD termghwihe heat loss coefficient and separating
ventilation losses from conduction. The resulfioign is:

Heating = (LOSSing + LOSSeny) / EfficienCyeating

Where
*  LOSSsing is heat loss from the building due to conductameguding HDD
» Lossentis heat loss from the ventilation system’s intakexternal air, including HDD

Cooling = (GaiRang + GaiNRen) / EfficienCytooiing

Where
* Gaingng is heat gain from the building due to conductamueuding CDD
» Gaingen is heat gain from the ventilation system’s intakexternal air, including CDD.

65°F (18.33°C) is a commonly referenced degreefulse. However, buildings may vary in their
internal gains. Therefore, rather than using tB&F6(18.33°C) base, the engineering model uses
modified degree-day bases, as informed by the rhorggression models.

b) Ventilation

The engineering model for ventilation estimategpdppnd return fan energy use. The model accounts
for differences in static pressure by system type lay building floor space. Typical meteorological
year data helped develop estimates of variableairme energy factors by climate zone.

The ventilation engineering submodel estimates Iyuppd return fan energy use. At its most basic,
the equation for ventilation energy use is as fodio

1,000CFMV [VentHrsC365C WG
8,520 VentEff

Ventilation =

Where
« CFMV = total ventilation air volume minute),
* VentHrs = ventilation system operating hours,
* WG = static pressure (inch of water gauge, WG),
e 8,520 = conversion factor iftn/min-kW),
* VentEff = ventilation efficiency.

The submodel uses this form to develop estimatesujoply and return fan energy, for a
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VentilationTotal = VentSupply + VentReturn (6)
Where

* VentSupply = supply fan energy, and
* VentReturn = return fan energy.

To estimate total ventilation air volume, the modelies on the external air ventilation volumes

discussed in the heating and cooling submodelmfldtes these values for some central and package
HVAC systems by assuming that the outdoor air va@usi25 percent of the total air flow rate, except
for labs where it is 100 percent. For heat pumpesys, the model assumes a central ventilation
system that circulates fresh air. The model alsmaats for differences in static pressure by system
type, and by building floor space.

c) Lighting

The lighting model estimates electricity consummptivom internal and external lighting for all
building types. The model calculates energy use fastor of average lamp power per floors pace and
average annual operating hours. The interior lighportion relies on information from CBECS on
percentage floor space lit by each lamp type, amitHing operating hours. The model assumes
average lamp system efficacy (lumens per watt) dach lamp type, and recommended average
illuminance levels by building type.

Lighting = LightingInterior + LightingExterior (7

The submodel calculates energy use as a factoveyhge lamp power per floorspace and average
annual operating hours. The interior lighting port relies on information from CBECS on
percentage floorspace lit by each lamp type, anftlihg operating hours. External assumptions
include average lamp system efficacy (lumens pett)wWar each lamp type, and recommended
average illuminance levels by building type. Theedor lighting portion assumes a fixed average
power density per lamp type, by exterior lightimpkcation: exit signs, exterior architecture, pagk
exterior signs, and exterior landscaping. Averagerual operating hours by building type are also
assumed.

LightingInterior = OpHrs * SgFt * LPT (8)

Where
* OpHrs = annual operating hours (hrs),
« SqFt = building floor space it
> IL,OLampR+ LampLPW

LampTypé
. LPT — Buildingtypeb ,
Where
o 1Ly = recommended lighting illumance levels by buitglitype (lumens),
e LampR = percentage of floorspace lit by a lamp type, (%)
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« LampLPW = average system efficacy, accounting for fixtweficiency and lumen
degradation over time (lumens per watt).
> OpHrs, OPwr

ExteriorLghtingTypei
. LightingExterior — Buildingtype,b

Where
* OpHrs, = annual operating hours, by building type (hrs),
* Pwri = weighted average wattage per square foot byiexleghting category (W).

CBECS information on percent lit by each lamp tgmes not sum to 100% because of overlap in
lighting types for given applications. However, éstimate lighting consumption, the submodel
renormalizes these percentages to develop avelagyessof lighting types. To estimate average
system efficacies, the model chooses typical laamgl pallast) systems for each lighting category. |
addition, it considers the presence of speculdeatefrs, which it estimates as improving light autp
by twenty percent. The presence of electronicatdl indicated which type of fluorescent lamp was
present, T12 or T8.

d) Office Equipment

The office model estimates electricity consumpfiamm office equipment for all building types. The
model divides office equipment electricity consuimptinto four components. One division separates
office electricity use into computer equipment warsther office electric loads. Computer equipment
includes PCs, monitors and printers. The non-coerpaised equipment includes copiers, faxes, cash
registers, and servers. The other division separafiéce electricity used during building on-hours
from electricity used during building off-hours.

Office = OfficePCOn + OfficePCOff + OfficeNonPCOnGfficeNonPCOff;

Where,
» OfficePCOnN = energy use of PC’s, printers and neesitluring building on-hours
» OfficePCOff = energy use of PC’s, printers and rtansi during building off-hours
» OfficeNonPCOn = energy use of servers, faxes, copied cash-registers during building off-
hours
» OfficeNonPCOff = energy use of servers, faxes, espand cash-registers during building
off-hours.

e) Water Heating

The water heating model uses system efficiency dovert water heating load to total energy

consumed, where the load is the amount of energglateto heat a given amount of water to a given
temperature. Additional energy is used in systemihvdistribute hot water throughout the building

or systems with storage tanks. To account for #rgation in energy use by system type, the model
uses indicators about equipment type and whetremiter is supplied by instant-heating types to
determine whether storage and distribution are.used

Water Heating = Load / WHEff = [(FTouw) * GPD * C, * C, * Days] / WHETf,
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o T = inlet water temperature (°F)

e Tou = temperature of delivered water (°F)

e GPD =gallons of water used per day (gallon/day)
« Days =days peryear (day)

+ Cy = the specific heat of water (btu/lb°F)

e G = the density of water (Ib/gallon)

WHEff = system efficiency (%)

f) Refrigeration

The refrigeration submodel calculates electricipnsumption from commercial refrigeration. The
submodel relies predominantly on end-use intensiyimates, by building type, from CEUS.
However, it also incorporates CBECS informatiorttoe number of refrigerators.

Refrigeration = x_EIRf * m_MonUse/12 * 1000 * RFUWs# x_RfEIPerUnit

Where
* X_ELRf=0, 1 depending on whether refrigeratiomdicated with RFGEQPS,
* m_MonUse/12 = fraction of the year the buildingagen (%), m_MonUse is based on
MonUse8 where present, or defaults to 12 whereingjss
» 1000 = conversion factor to convert kilowatt-hotorsvatt-hours
* RFUnit = total number of refrigerator units in loiiig =
* m_RFGCLN + m_RFGOPN + m_RFGRSN + m_RFGVNN + mGRHN,
» and x_RfEIPerUnit = x_RfEIEUI / x_RFDensityBldng,

Where
» SqgFtRf = SqFt8 * x_EIRf,
D RFUnits
CEUS_BType
> SqFtRf

« RFDensity = CEUS_EType

g) Other

The electricity and district heat models rely ogjiaerering estimates. Since many types of equipment
use electricity, CBECS does not explicitly ask liatricity is used for unspecified “other” uses of
electricity. Therefore, the engineering model eates “other” electricity use by applying the CEUS
(2005 California Commercial End-Use Survey) intgasi for miscellaneous, process equipment,
motors, and air compressors to the CBECS floorsp@lkese estimates were then adjusted for the
number of months of building operation per yeanc8idistrict heat is primarily used for heating,
water heating, cooling, and cooking end-uses, whiete explicitly modeled, and given the relatively
small number of cases and lack of information, thstrict model does not calculate “other”
consumption. For fuel oil and natural gas, the rhdde other energy use is based on regression
estimates.

Cross-sectional Regressions
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Cross-sectional regression models were used tbratdi the natural gas and fuel oil engineering
estimates. The cross-sectional regression modelsatoral gas were fit with consumption per square
foot as the dependent variable and the indepengeizbles were defined on a corresponding scale.
Besides the engineering estimates, independerdblesi included dummy variables for the presence
of a laundry, cleaners, or central plant, and thcate natural gas use for manufacturing or elgotri
generation. Additional dummy variables were definedndicate whether natural gas or some other
fuel was used as a secondary heating source iouilding.

The cross-sectional fuel oil regression models vigre@ith CBECS consumption per square foot as
the dependent variable. The independent varialiened on a corresponding scale, included the
engineering estimates and dummy variables for thegmce of a central plant or the use of fuelail f
manufacturing or electricity generation. Additibdammy variables were defined to indicate whether
fuel oil or some other energy source was usedsas@ndary heating source in the building.

Final Reconciliation

For electricity, reconciliation with the total camaption took two steps. First, the monthly model
results were used to provide approximate estimatemnual heating and cooling use. For each case
with monthly regression estimates, the ratio ot theating or cooling estimate to the corresponding
preliminary engineering estimate was calculatece edian ratios were then reviewed by building
size, activity, and age, as well as by climate z@iace the results showed a definite variation by
climate zone, the median ratios were used to atheseéngineering estimates for electric primarythea
and electric cooling for all cases. Second, thestdfl engineering estimates were prorated to match
the CBECS estimate of total building electricityneamption.

For natural gas and fuel oil, the adjusted engingeestimates were prorated to match the total
building consumption. For district heat, the ergiring estimates were prorated to match the total
building consumption.

3.34 Results

Figure 2-134 shows the geographical areas as definehe U.S. Bureau of Census including the four
Census Regions and nine Census Divisions. Offididihg samples distributions by floor area,

vintage and location are shown in Figures 2-132-t837 respectively. Figure 2-138 lists the site
energy use intensities (EUI, in kwh/m?) for offiomildings in nine census divisions. The average sit
EUI is 292.6 kWh/m? for the office buildings in ti2003 CBECS, with HVAC (Space Heating +

Cooling + Ventilation) consuming 50.5% followed bghting 24.9%. The single largest end use is
space heating which consumes 35.3% of total sieggn
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Figure 2-138: Average site energy use intensiti&gH/n?) for office buildings in nine census
divisions

3.35 Conclusions

This document describes the data analysis methed g CBECS 2003 for end use estimates for
office buildings in the U.S. Statistical regressiaand engineering modeling approaches were used to
calculate end uses based on monthly consumptian fdatelectricity and natural gas, and collected
building system characteristics in the survey. Tefour major end uses in office buildings arecepa
heating, lighting, space cooling, and plug loadéde equipment + computers).
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3.4 Experience 3. Energy saving potentialities by retrfitting the European residential
sector

(C. Becchio, S. P. Corgnati, I. Ballarini and V. Caado, Politecnico di Torino, ltaly)

Energy saving

The nationabuilding typologiesan be used as data sources for forecasting atgaéng the energy
saving potential and the carbon dioxide emissialuecgons for each European country. Thereby the
main objective of the IEE TABULA project has beercteate a harmonized structure of the European
building typologies and to identify representatinglding types. This purpose has come from the need
to assess the energy consumption of the nationlalifg stock and consequently to predict the impact
of different energy efficiency measures in ordeisébect effective retrofit strategies on the erpti
buildings. Two levels of building retrofit have lmeeonsidered: atandard refurbishmentpplying
measures which are commonly used in the countrnyaduanced refurbishmenapplying measures
which reflect the best available technologies. &haluation of each reference building type has been
performed in each country by using the national BRBset rating method and by showing the energy
performance before and after the refurbishment.

Additional statistical information about the frequg of constructions and of heating systems types
has made possible the use of the reference buitgpes as models for the assessment of the energy
performance of the whole national building stock.

The present paper reports the first outcomes oafipdication of the above described methodology to
the national residential building stocks of foumuntries representative of the North, Middle, South
and East European Countries. It summarizes thétsgmesented in the TABULA reporApplication

of Building Typologies for Modelling the Energy 8ate of the Residential Building Stbck

3.4.1 Introduction

TABULA (Typology Approach for Building Stock Energissessment) [1] was a project within the
European program “Intelligent Energy Europe” (IEE)h the participation of thirteen European
countries (Germany, Greece, Slovenia, Italy, Framedand, Belgium, Poland, Austria, Bulgaria,
Sweden, Czech Republic and Denmark). The projefctire has been to create a harmonized
structure of the European building typologies [Bach participant developed a building typology
classification that allowed to divide national eiig buildings in categories: for each category, a
building type was identified as representative adedfined climatic region, period of construction,
building size, etc. In many European countries,dhssification of building types is a concept athe
used at national and/or regional level. Howevethlai national and at European level, a number of
problems rise up due to lack of shared definitidnsunknown or not updated data about existing
buildings, to the difficulties in defining a commononcept of building typology. In practice, it is
impossible to compare the types of buildings amBaogopean countries without uniform and shared
definitions. As a consequence, TABULA firstly aiméal create a harmonized structure to classify
building types in Europe: the project focused idential buildings, but a possible extension teeot
uses is also possible.

Building typologies developed during the TABULA ot can be exploited as a basis for analysing
the national housing sector. In fact, a cruciallgefathe project has been to estimate the energy
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consumption of residential building stocks at rmagidevel and, consequently, to predict gatential
impact of energy efficiency measuesldressed to building envelope and space heatidgDédW
systems) in order to select effective strategiesufmrading existing buildings. In particular, dgi

the TABULA project six of the European partners Id@gm, Czech Republic, Denmark, Germany,
Greece, ltaly) carried out model calculations aineednage the energy consumption and estimate the
energy saving potentials of their national resi@déiuilding stocks (Energy Balance Method).

Specifically, as shown in Figure 2-139, startingnfrglobal statistics at national and regional lered
from the corresponding available residential buddisamples divided in classes, some reference
building types have been selected in order to obgairelevant characterization of the analyzed
buildings. They have been chosen as representeafive large portion of the national residential
building stock. Different modelling approaches wergosen by the partners depending on the
available statistical data. Some defined a seywothetic buildings reflecting building stock aveeag
others applied a set of generic example buildings fthe national TABULA typologies.

The methodology provided by the European standaugsporting the Energy Performance of
Buildings Directive (EPBD, 2002/91/EC) has beenligpipfor the evaluation of the energy demand of
the selected building types and to assess the yesakgng potential due to energy retrofit actioims.
fact, for each reference building type two refunbient measures have been consideredamdard
refurbishmenthrough the application of measures commonly agplighin the country; aadvanced
refurbishmentthrough the introduction of measures that refldet use of the best available
technologies. Finally additional information abdbte number and the frequency of each specific
building type has made possible the applicatiostafistical models in order to estimate the overall
energy performance, energy saving potentialitiaghan dioxide emissions reductions of the building
stock at national/regional level.

ENERGY BALANCE METHOD
ENGINEERING METHOD

Transfer the scenarios from
] s building samples to the whole
Available building building stock (energy saving
sample potential at

O Simulations:
Scenarios
Energy performance for the
renovated buildings

Energy saving actions

"Building Types" definition: Snlations: to improve building

1. Example building Energy * performance

2. Real bulld!ng performance at (Sce”aﬂos)

3. Theoretical building the present stage 9
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Figure 2-139: Procedure for Energy Balance Metheediin the TABULA project to predict the
potential impact of energy efficiency measuresational housing sector.

This contribute shows the first outcomes of theliappon of the above described Energy Balance
Method at the national residential building stolonr countries:

» Denmark, as a representative of the North Europeantries;

« Germany, as a representative of the Middle Europeantries;

» ltaly, as a representative of the South Europeantces;

» Czech Republic, as a representative of the Easipean countries.

The data presented in this paper have been exatadofrom the TABULA report “Application of
Building Typologies for Modelling the Energy Balanof the Residential Building Stock” [3] and
from the “National Scientific Report” on the TABULvoject of the four analysed countries [4-7].

3.4.2 Denmark

The energy balance of the Danish residential ugisliwas calculated using synthetical average
buildings. These were split within nine differeminstruction periods and three building types (€ngl
family houses SFH, terraced houses TH, block ¢ #B).

In order to estimate energy saving potentials #tenal Energy Balance method was used.
Refurbishment measures were applied only to thelepe and consisted in two different levels of
thermal insulation: the standard refurbishment gsoaiated with a high thickness of insulating
material (300 mm for the ceiling, more than 100 fiemthe wall), while the advanced refurbishment
is associated with a higher thickness of insulatiaderial (400 mm for the ceiling, more than 200 mm
for the wall). Consequently, the energy saving pidg was calculated only in term of net energy
demand for heating and DHW. The results of theyamlare presented in term of energy saving and
CO, emission reduction in Table 2-37.

Table 2-37: Annual energy saving potentialities térms of net energy demand for space heating
and DHW) and C@ emissions reductions by standard and advancedhistunent for Danish
residential building stock.

Original State Standard Refurbishment Advanced Refurbishment
Reference A% A%
. Quwp tco2 AQuw,p . Atcor AQuw,p . Atcoo
building type savings savings
[10°GWh] [10%] [10°GWh] [] [10% [10°GWh] [] [10%]
SFH and TH 315 --- 14.6 -46% 15.6 -50%
AB 12.1 5.3 -44% 5.9 -49%
43.6 19.9 -46% 3.1 215 -49% 34

3.4.3 Germany

The analysis of the German building stock was cotetlon a set of six synthetical average buildings.
Two building size classes (single family houseshwdhe or two dwellings and multifamily houses

with three or more dwellings) and three constructi@riods according to different levels of energy
saving national regulations were considered (Ta38).
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Table 2-38: Classification of the German buildingck.

Reference building type

Construction period

Number of buildings

Single Family House SFH | until 1978 9'610'000
Single Family House SFH I 1979 — 1994 2'710'000
Single Family House SFH Il 1995 - 2009 2'670'000
Multi-Family House MFH | until 1978 2'340'000
Multi-Family House MFH 11 1979 — 1994 440'000
Multi-Family House MFH 11l 1995 — 2009 270'000
18'040'000

The energy balance model was developed on basiseddvailable statistical input data. The energy
demand for space heating of the considered sixlibgiltypes was calculated according to a seasonal
energy balance approach. In this way an estimati@mergy saving potentials in the German building
stock for heating and hot water supply was caroed

The refurbishment measures consisted in the apiplicaf insulation material on walls, floors and
roofs and in the replacement of windows. The stahdafurbishment is characterized by U-values of
0.24 WI/(nfK) for walls, roofs and upper floor ceilings, U-uak of 0.3 W/(rfK) for ground floors
and cellar ceilings and U-values of 1.3 Wikn for windows. The advanced refurbishment is
characterized by U-values of 0.16 W for walls, U-values of 0.14 W/(fK) for roofs and upper
floor ceilings, U-values of 0.20 W/@K) for ground floors and cellar ceilings and U-vesuof 0.80
W/(m?K) for windows. With reference to the retrofit dfet space heating and DHW systems, at the
standard level it was considered to replace thedwrzerator, while at the advanced level the measur
consisted in the improvement of efficiency of thistibution and generation subsystem, in the
application of an heat recovery ventilation systerd in the installation of a solar thermal plant.
Energy saving potential obtained by retrofitting tBerman residential building stock is reported in
Table 2-39.

Table 2-39: Annual energy saving potentialitiestérms of primary energy for space heating and
DHW) and CQ emissions reductions by standard and advancedrbishiment for German
residential building stock.

Standard Refurbishment Advanced Refurbishment

A% A%

Original State

Quw,p tco2 AQuw,p ) tcoz2 AQhw,p ) Atcor
savings savings
[10°GWh] [10%] [10°GWh] [] [10%]  [10°GWHh] [] [10%]
661 136 304 -46% 63 512 T7% 100
3.4.4 ltaly

In Italy, six reference building types were createdepresent the housing stock for the purpose of
Energy Balance analysis, as shown in Table 2-40.

Table 2-40: Classification of the Italian buildirsgock.

Construction period

Reference building type Number of buildings
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Single Family House SFH.01 until 1900 1'046'278

Single Family House SFH.03 1921 — 1945 559'336
Multi-Family House MFH.04 1946 — 1960 707'563
Apartment Block AB.05 1961 — 1975 869'056
Apartment Block AB.0O6 1976 — 1990 1'214'773
Apartment Block AB.O7 1991 — 2005 358'765
4'755'771

These reference buildings were chosen accordirgiatiistical analysis: they are representative of a
suitable significant portion of the entire natiohallding stock considering both the constructige a
and the building size (i.e. number of apartment®rfarea) and they belong to the “Middle Climatic
Zone” (from 2100 to 3000 heating degree days), lvisache most representative of the Italian climate
(about 4250 municipalities on a total number of @1&pecifically, the first two reference buildings
(single family houses) are “Theoretical Buildingshosen on the basis of statistical data (Piedmont
Regional Database of Building Energy Performancetifidates). The other reference buildings
(multi-family house and three apartment blocks) “@eample Buildings”, i.e. real buildings defined
typical according to the experience.

The official national calculation method (TechniGgecification UNI/TS 11300 - National Annex to
CEN Standards) for energy certificates was appiiedhe evaluation of the energy demand of the
selected reference buildings and to assess th@yesaring potential due to energy retrofit actions
according to two different scenarios (standard ahchnced refurbishment). In regard to the envelope,
the refurbishment measures consisted in the apiplicaf insulation material on walls, floors and
roofs and in the replacement of windows. The carsid U-values correspond to the requirements
established by the new regulations on energy padoce of buildings in Piedmont Region (D.G.R. n.
46-11968), that belongs to the “Middle Climatic 26nThe U-values applied for the standard
refurbishment are the U-value limits set by thedRient Region regulation (0.33 W/ for walls,
0.30 W/(nfK) for roofs, ceilings and floors, and 2 WAK) for windows), while the U-values applied
for the advanced refurbishment are the optionalalley targets set by the Piedmont Regional
regulation (0.25 W/(1K) for walls, 0.23 W/(rfK) for roofs, ceilings and floors, and 1.7 WH) for
windows).

With reference to the refurbishment of the spacating and DHW systems, some measures were
considered in order to improve the efficiency ofigsion, distribution and generator subsystems and
to exploit renewable energies with the installatidra thermal solar plant (advanced refurbishment).
Energy saving potentialities obtained applyingrtientioned retrofit measures at the Italian residéent
building stock are reported in Table 2-41.

Table 2-41: Annual energy saving potentialitiestérms of primary energy for space heating and
DHW) and CQ emissions reductions by standard and advancedrbistument for Italian
residential building stock.

Original State Standard Refurbishment Advanced Refurbishment
Reference
. A% A%
building Quw,p tco2 AQuw,p . tco2 AQuw,p . Atcon
savings savings
type 3 6, 3 X 6, 3 X 5t
[10°GWh] [107%] [10°GWh] [] [107%] [10°GWh] [-] [10°]
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SFH.01 50.6 10.3 38.8 -T7% 7.9 42.8 -85% 8.7

SFH.03 221 4.5 17.8 -81% 3.6 19.4 -88% 3.9
MFH.04 127.2 25.8 98.2 -17% 19.¢ 105.5 -83% 21.4
AB.05 419.5 85.2 301.2 -72% 61.2 349.9 -83% 71
AB.06 364.3 74 204.4 -56% 41.t 255.4 -70% 51.9
AB.07 76.6 15.6 32 -42% 6.5 42.3 -65% 8.6
1060.5 215.3 692.5 -65% 140.6 815.4 -77% 165.5

3.45 Czech Republic

Six reference building types were created to regmeshe Czech Republic housing stock for the
purpose of Energy Balance analysis. This set dflingjs was categorized by size and age as shown in
Table 2-42.

Table 2-42: Classification of the Czech Republiddiog stock.

Reference building type Construction period Number of buildings
Single Family House SFH.1 until 1979 1'649'756
Single Family House SFH.2 1980 — 2001 424'172
Single Family House SFH.3 2002 - 2010 139'293
Multi-Family House .

APT.1 until 1979 1'277'705
and Apartment Block
Multi-Family House

APT.2 1980 — 2001 574'438
and Apartment Block
Multi-Family House

APT.3 2002 — 2010 165'648
and Apartment Block

4'159'902

The buildings are theoretical buildings based andhalysis of available statistical data and on the
knowledge of historical standard requirements lier W-values of the building envelope and the usual
efficiency of the heating and DHW systems.

The energy balance model was created on basisdft#tistical data. The delivered energy and the
energy demand for space heating of the consideredreups of buildings was calculated using
national calculation method.

In this case the refurbishment measures were foredhe basis of recent studies. In fact, it was
estimated by experts that by achieving U-valuesgiieed by the latest version of the Czech standard
CSN 730540 following amount of energy can be saved:

* 20% of energy in average can be saved by applyinC& (External Thermal Insulation
Composite Systems) to the exterior walls;

* 10% of energy in average can be saved by roofatisul;

» 25% of energy in average can be saved by windoplagement;

» heating control systems would bring savings rangiogroximately between 5 and 15%;

» the losses can be reduced up to 50% by insulatioygeply the pipes.
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The above mentioned percentages were considerddeircalculation energy balance model and
distributed over the categories of buildings. Tésufts are shown in Table 2-43.

Table 2-43: Annual energy saving potentialitiestérms of primary energy for space heating and
DHW) and CQ emissions reductions by standard and advancedhisfument for Czech Republic
residential building stock.

Original State Refurbishment
Reference
- A%
building Qnw,p tco2 AQuw,p . Atcor
type savings
[10°GWh] [10%] [10°GWh] [] [10%]
SFH.1 11.9 55 7.7 -65% 3.6
SFH.2 12.7 5.9 4.8 -38% 2.2
SFH.3 5.5 2.6 11 -20% 0.5
APT.1 6.1 2.9 3.2 -52% 1.5
APT.2 15.2 6.5 5.3 -35% 2.3
APT.3 5.4 2.6 1 -19% 0.5
56.8 26 23.1 -41% 10.6

3.4.6 Conclusion

The analysis shows that building typologies can abéhelpful tool for modelling the energy

consumption of national building stocks and forrgiaig out scenario analyses beyond the TABULA
project. The consideration of a set of represergdbuildings, which reflect the current state of th

building national stock, makes it possible to hawedetailed view on various packages of
refurbishment measures for the complete buildingsksor for its sub-categories. The effects of
different insulation measures at the respectivesitantion elements as well as different system lsupp
measures including renewable energies can be @asith detail with fast analysis.

As general rule, when two different level of reirofiere considered it is noted that the standard
refurbishment is associated with high relative patage of energy saving (Figure 2-140): the energy
saving due to a standard refurbishment is biggen tthe saving variation between a standard
refurbishment and an advanced refurbishment. ity fetional building stock is often characterizgd b
low energy performance and even the applicatiomasfc energy renovations may provide significant
increases in energy performance and consequenttieadwf CQ emission (the case of Italy is
exemplificative of this trend). Thereby from an eomic point of view it is more convenient to apply
standard refurbishment measures at the nationkibgistock than advanced ones that are the most
expensive.

It was highlighted that, even with standard refsinbients, energy saving over 45% can be achieved.
As a consequence of this big saving potential ablet policies to address energy retrofit actions of
existing buildings are crucial.

Finally, the quality of future model calculationdlvdepend very much on the availability of statiat
data. For reliable scenario analyses, informatlmruithe current state of the building stock anouab
the current trends is needed. The availability segiilar update of the relevant statistical daté lvél

an important basis for the development of energtesgies in the building sector.
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Figure 2-140: Comparison between annual energyrgppotential by applying a standard
refurbishment and an advanced one to the Danishin@e and Italian building stock.
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3.5 Experience 4. National/Regional investigation levelSingle & Multifamily houses in

Italy
(N. Tala, TEBE Research Group, Department of EnergyPolitecnico di Torino, Italy)

3.5.1 Introduction

The IEE-Project TABULA is aimed to create a harnzewdi structure for European Building
Typologies, focusing on residential buildings: tbpic of the research is how to collect, elaboeatéd
analyze data characterizing national building stoctlkorder to define “typical” buildings able to
express a Building Typology. Different strategieghwdifferent level of information details can be
adopted for “typical” building definition.

In this work, the different approaches for definithg “building typologies” are tested. In partiaula
three methods are explained to show the developedhmark models: the first method identifies
building types based on several assumptions deduceah expert without statistical data; the second
method processes empirical data to pick out reddiibgs that are representative of the stock; final
the third method provides a building that is thestrobable of a group of buildings.

Then, these approaches are applied to some Itdss studies: example building

characteristics, statistical analysis on residéntiailding database, Italian building typologies
structures.

Type of building Residential buildings

Dimension 80+400 nf
Location Piedmont, Italy
Thermal characteristics Variable

Type of observed spaces Whole building

Year of construction

Seven building age classes (1900+2005)

No. of floors

Variable (2+10)

Windows, orientation

Either N, E, S, W

Window opening Variable
Shading devices Variable
Sources of heat gains -

Activity, sex and age of occupantsVariable
Origin of occupants Variable

3.5.2 Aim of the work

The project objective is to create a harmonizedcsire on the building types in Europe. Each
participant develops a “building types” classifioatat national level: each identified “buildingoy’

is representative of a defined period, size, etc.

Another important outcome of the project is the edlegment of an interactive web tool where the
“building types” classification can be used witHfelient objectives in the building energy sector:
advice for energy retrofitting, energy performaregsessment of building stocks, comparison of
energy performance among buildings and buildingkstoIn particular the web tool contains a data
structure of “building-types”, characterized by dimsions, shape factors, thermo-physical properties
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(e.g. thermal transmittance of building componergfficiency of heating systems and other energy
indicators.

A crucial goal of the project is to estimate theergy consumption of residential building stocks at
national level and, consequently, to predict thiepiial impact of energy efficiency measures ineord
to select effective strategies for upgrading emgstbuildings. To this aim, it is fundamental the
application of a methodology for the definition“blilding types”, which allows the classificatiorfi o
existing buildings in categories (“buildings-typesd be analyzed and investigated.

3.5.3 Database characteristics

Number of buildings 7104

Period of measurement Not applicable -
Duration (days) - -
Number of observed spaces - -
Number of observed spaces wijth -
window sensors

Items Interval
IF1. Climate Heating Degree Days -
IF2. Building envelope U-value, Window to wall ratio -

IF3. Building service & Systems Type of space meptsystem: space heating|—
centralized/decentralized
IF4. Operation & Maintenance - -
IF5. Indoor environmental quality | - -
IF6. Occupants’ activities and
behavior
IF7. Social and economical aspects -

The database contains records for more than 661008es rated across Piedmont. The 66.000 house
records represent the result of the informatiotectdd by EP certification schemes.

The database contains information on physical cbaratics and calculated energy requirements of
each house. Each submission includes more thamfd@riation fields.

The data includes:

e |ocation;
e construction period;
o form;

* heated gross volume;

* netfloor area;

* window average thermal transmittance;

» calculated energy demands and indicators.

The purpose of the EPCs database is also to gttheindividual energy analyses data. Once an
energy advisor successfully completes the energgsament of a house, the resulting energy analysis
data is collected and stored into the database.

In order to validate the quality of data and toifg the analysis the amount of data is restridied
only 7104 certificate schemes. In particular, aparit blocks, multi-family houses, terraced houses
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and single-family houses have been considered. Gatzhare conveniently illustrated by means of the

pie charts in Figure 2-141 and Figure 2-142.

Certificates for each building typology
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Figure 2-141: Split of Energy Performance
Certificates for each building typology (66063
certificates).

Figure 2-142: Split of the selected Energy
Performance Certificates for each building
typology (7104 certificates).

3.5.4 Methods applied for the data analysis

In order to define a typical house useful for dimsog the thermal and geometric characteristica of
group of houses, the first step consists of idgimigf independent variables influencing the multgud
of parameters that are specific to the building.

The TABULA project has fixed three independent ahlés which are: location, age and form. In the
specific Italian case, the three-dimensional sphatgenerate appropriate reference building iresud
3 climatic zones, 7 ages and 4 forms of Italiandioy (single-family homes, multi-family homes,
terraced house, apartment block), the combinatpr@ess produces 84 building typologies.

First Approach

According to the first approach the definition ditrepresentative building (Example Building) is
based on construction period, size and region bgxaert using rule-of-thumb to compensate the lack
of statistical information.

Second Approach

The second method identifies the typical buildiftedl Building) employing a statistical analysis.
Collected data are statistically elaborated to miak the real building with geometrical and thermo-
physical characteristics similar to the averagthefbuilding sample.

The Piedmont Regional Database of Energy Perform&ertificates has been used to define the
building typologies within the categories singlenfy homes and terraced houses.

The following steps outline the method adopted.

Based on the available data, representative pagasnef geometric and thermal features have been
selected. These parameters are: volume, net flear anvelope area to volume ratio, number of &vel
number of dwellings, opaque envelope average tHetraasmittance, window average thermal
transmittance.

243



For each parameter the number of data were suffi¢# least 10 observations) to calculate sta#bti
functions such as mean, median, 25th percentith, gé&rcentile.

Interquartile ranges (IQRs) are evaluated forladl parameters. This step allows to identify, fahea
parameter, the 50% of the buildings close to thdiamevalue. The intersection of all IQRs permits to
select the single real building whose parameterdlae closest to the median values.

If this procedure gives more than one or no redding, IQRs can be tuned by means of suitable
criteria in order to pick out only one real builgin

The available data of the real building identified such procedure are not sufficient to perform
energy analyses. Additional parameters have topeeified according to experience or statistical
analysis.

Third Approach

The third method identifies the typical buildingh@oretical Building) as an archetype, that is “a
statistical composite of the features found withicategory of buildings in the stock” (ECBCS,2004)
The main steps for developing an archetype camtrerarized as follows:

Identification of primary independent variables )(Xor describing the parameters (Pj) of a specific
house (BK) in the stock. For example the followpayameters (Pj) that characterize the building can
be considered: building external shape, internaddg window to wall ratio, thermal insulation...

On the other hand, among the independent varia@sit is possible to consider: floor area,
construction year, location, main heating source...

Determination of the trend of each parameter basedthdependent variables by means of several
engineering hypotheses, analysis or rule of thuliis permits to Figure out which are the most
significant independent variables xi for each partam

Determination of the analytical relation betweee fth parameter and its significant independent
variables using statistical analysis (e.g. regogst@chniques).

An example showing the application of this approfmhthe window average thermal transmittance
(WTT).
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Figure 2-143: Thermal transmittance analysis.
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As result of step 2, this specific parameter presen significant relation with the floor area. A
sampling of 339 buildings was selected from thelRient Regional Database of Energy Performance
Certificates. The WTT values associated with the digrtile, mean, median and 3rd quartile are
evaluated for each of the 10 groups defined byd#wles of the population in terms of floor area. |
this particular case, each group contains appraeima4 buildings. Figure 2-143 presents the four
dispersion values for each central value of thedegrbups. Regression curves and their analytical
expression (STEP3) for the 1st quartile, mean, arednd 3rd quartile are reported.

3.55 Main results and discussion

The prediction of energy consumption of residertiigilding stock and the measure of energy savings
due to efficient strategies at national level ageyvtopical research items. To this aim, it is impnot

to define a methodology for the generation of “Ouig types”, representative of the categories to be
investigated. It is fundamental to establish thieguo develop the building typology in order to
compare the most suitable configurations and san#or the implementation of efficiency measures.
The three methods introduced for defining the ‘tind) types” permits to face, in practice, the
problem of the definition of “building typologiesivhen different level of information details are
available.
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