#### IEA Future Buildings Forum in Singapore 24 – 25 October 2017 at the BCA Academy



Poul E. Kristensen, Director IEN Consultants Hasselvej 30, 2830 Virum Denmark

**Research and development on energy efficiency and RE in buildings since 1977** (Joined IEA SHC Task 1 in 1978)

1977 – 2000 Working internationally out of Denmark 2001 – 2017 Working primarily in Malaysia and Vietnam

2001 – 2012 : MD of IEN Consultants, Kuala Lumpur Malaysia

2013 – 2017 : WB/IFC Hanoi -Senior Technical Adviser - "Vietnam Green Buildings Program"

2015–2017 : UNDP/GEF International Technical Expert on EE in Buildings – "EE Improvement in Buildings in Viet Nam"

Zero Energy Townships in Vietnam, a Macro-Economic Perspective

A Zero Energy Township is a township that produces all the energy needed in the township from renewable energy

A combination of energy efficiency in buildings and use of renewable energy

In the case of a Vietnamese township, the main energy technologies will be :

Advanced technologies to reduce energy consumption in buildings : 50% savings

□ Solar electricity and solar energy for heating of hot water : 25% savings

□ Hydropower electricity imported from the electric grid : remainder 25%

- The NamCuong Zero Energy Township must be a Smart Electricity City
- Buildings are designed so that they have a reduced power consumption from the grid when local solar energy is not available,
- ✓ Import of electricity from the grid is reduced and happens only during off peak periods

# Figure A-15: Hourly load curve of the peak day



Source: EVN (2013b)



# Copenhagen has the ambition to become the 1<sup>st</sup> Carbon Neutral Capital in the World By 2025

Reduce carbon emissions, create green growth, enhance quality of life.



**COPENHAGEN - CARBON NEUTRAL BY 2025** 









A MIM

Historical and expected electric generating capacity in Vietnam (2010-30) gigawatts

Hydroelectricity covers around 20% of total electricity load.

The Zero Energy Community can only draw 20% of normal electricity consumption (kWh/year)

The Zero Energy Community should draw 0% of normal peak power (kW)





Figure 2: Annual electricity demands per control region (above) and peak demands per control region (below).



# World Solar Energy map









# Integration of Solar PV in the facades

Experiences with Energy Efficiency in Malaysia and Vietnam





- Costs for going green : 2 5% extra construction costs
- Saving on Energy Bill : 30 60%
- Payback period for Green Buildings : 3 6 years





Green Buildings are Cheaper than Grey Buildings

## 10.000 m<sup>2</sup> office building





+ Savings on Energy Consumption (40 – 50%)

+ Savings on  $CO_2$  Emissions (40 – 50%)





Vietnam Energy Efficiency Standards and Labelling Program: Australian Government Support Project

Market Survey, September 2012

# **Estimate of Energy Savings Potential for Domestic Buildings**

### Preconditions so that *new power plants are not needed*

- > The buildings can buy 20% electricity from EVN (Hydropower)
- The buildings must draw minimum power from the grid during peak hours (9.00 – 17.00 hours)

|               |     | Savings on kWh |     | Savings on peak load |     |
|---------------|-----|----------------|-----|----------------------|-----|
|               |     |                |     | 10.00 am             |     |
| Refrigerator  | 15  | 75%            | 11% | 100%                 | 15% |
|               |     |                |     |                      |     |
| Television    | 13  | 50%            | 7%  | 100%                 | 13% |
|               |     |                |     |                      |     |
| Lighting      | 19  | 75%            | 14% | 75%                  | 14% |
|               |     |                |     |                      |     |
| A/C           | 17  | 40%            | 7%  | 90%                  | 15% |
|               |     |                |     |                      |     |
| Rice Cooker   | 16  | 0              | 0%  | 90%                  | 14% |
|               |     |                |     |                      |     |
| Water Heating | 10  | 100%           | 10% | 100%                 | 10% |
|               |     |                |     |                      |     |
| Michellaneous | 10  | 50%            | 5%  | 50%                  | 5%  |
|               |     |                |     |                      |     |
|               | 100 |                | 54% |                      | 87% |
|               |     |                |     |                      |     |
| Draw from EVN |     |                | 20% |                      | 13% |

Energy Efficient Buildings is the cheaper solution



It is cheaper to build an Energy Efficient Building than to build power plants

- One MW saved in buildings is cheaper than one MW extra power plant capacity
  - + we save on electricity costs for the comsumer

+ we save  $CO_2$  emissions for the environment

*Effective Financial Instruments must be based on this economic reality* 

#### Proposed Nam Cuong Zero Energy Township, Hanoi, Vietnam



#### Key prequisites for implementation :

- □ Saving MW's is cheaper than building MW's
- Cooperation with the utilities is critical (EVN : Electricity of Vietnam)
- Support by the Government of Vietnam : Ministry of Industry and Trade MOIT
- Technologies for energy efficiency and solar PV are technologically mature and financially competitive
- Recognition by the International Energy Agency can be most importrant for further progress

Advanced technologies to reduce energy consumption in buildings : 50% savings

□ Solar electricity and solar energy for heating of hot water : 25% savings

□ Hydropower electricity imported from the electric grid : remainder 25%

# Figure A- 20: Electricity consumption in Viet Nam by sector in 2012



Source: EVN (2012)

#### Examples of Zero Energy Cities in the world

**Copenhagen**, with 1. 2 million inhabitants, is striving to be **the worlds first Zero Energy Capital by 2025** 

Around the world there are several initiatives to develop and demonstrate Zero Energy Townships. Some of these are :

- **Z-Net Uralla in Australia** between Sydney and Brisbane is developing a Zero Energy Township
- **Crisfield's community in Maryland US** is developing a Zero Energy Township, primarily based on wind energy
- **Beddington Zero Energy Development (BedZED)** north of London is an existing Zero Energy Township, based on solar electricity and biomass