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Abstract

Conventional methods of studying houses’ Energy Performance Certificates (EPCs) typ-
ically fail to investigate the impact of interrelated contextual elements instead fixating
exclusively on the specific attributes of individual houses. This study presents a new
method that combines network graph analytics (NGA) with interactive visual analytics
to investigate hidden linkages at the individual house level. Our proposed platform col-
lects and analyses data related to housing attributes, creates a network based on the links
between these attributes, and employs sophisticated graph algorithms to provide visual
representations. Users have the ability to dynamically choose postcodes, metrics, and
attributes, which, in turn, generate layouts of networks that provide valuable insights. The
visualisation utilises colour gradients and node metrics to improve the comprehensibility
of energy performance areas. The platform enables homeowners and stakeholders to com-
prehend the interrelationships between aspects such as neighbouring housing features, and
house infrastructure. The results prove the efficacy of the strategy by giving a collection
of case studies that encompass various Energy Performance Certificates (EPCs) ranging
from A to G. Each case study demonstrates the evolution of network architectures and
visual assessments, showcasing the energy performance linked to certain EPC ratings. The
platform offers a user-friendly interface for stakeholders to investigate and understand
attribute relationships.

Keywords: energy efficiency; residential buildings; visual data analysis; energy performance
certificate; graph visualisation; buildings features; stakeholders

1. Introduction

In the modern context of sustainable lifestyles, the quest for having improved energy
efficiency in residential properties has gained an outstanding significance [1]. In this
undertaking, Energy Performance Certificate (EPC) tests are paramount [2], as they describe
standardised measurements to measure and communicate the energy efficiency of a specific
dwelling. However, the traditional methods which are used to calculate the EPC do not
always comprehensively reflect the numerous and interconnected environmental facts
that affect the energy efficiency of a dwelling [3,4]. This limitation does not only limit
the accuracy of energy efficiency assessments [5] but it also acts as a barrier to progress
in personalised therapies aimed to be tailored to the unique properties of individual
property objects [6]. The new method introduced in this paper is a combination of network
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graph analysis (NGA) and visual analytics that allows understanding the different factors
influencing energy efficiency not only in individual households but also leads to an in-depth
comprehension of the problem. The standard EPC calculations rely primarily on indicators,
a limited and standardised image of energy performance of a property [7]. These actions
are often insufficient to describe this intricate interplay of factors, which cumulatively affect
the energy efficiency landscape [8].

To address these challenges, the way energy efficiency analysis processes are con-
ducted has to be radically changed. NGA is a significant and transformative change to find
the unknown linkages and relations among data. Instead of using the fixed measures, NGA
also adopts a broader scope by developing a dynamic network of interconnected aspects of
contexts. It is accompanied by visual analytics, which is necessary to convert complex data
into visual material that is convenient to interpret and interact with. This synthesis permits
the stakeholders to investigate the developing interrelations among variables in different
contexts that increase the interpretability of the data.

Recent work has demonstrated the power of embedding explicit network structures
into machine learning and visual analytics pipelines to improve interpretability and per-
formance [9]. Li et al. [10] propose the Feature Analysis Network (FAN), which fuses a
Bayesian network output layer with standard deep encoders to yield up improvements
in interpretability while maintaining original accuracy. Building on this, Gao et al. [11]
employ FAN-inspired graph structures to optimise intricate heat-sink fin geometries,
achieving superior thermal dissipation in lightweight designs. On the theoretical side,
Bick and Krishnan [12] formalise higher-order networks via simplicial complexes, enabling
the modeling of multi-way attribute interactions beyond pairwise edges. In the do-
main of energy-efficient neural architectures, Kundu et al. [13] introduce Spike-Thrift,
an attention-guided compression pipeline that attains weight reduction and compute en-
ergy savings on spiking neural networks. Earlier, Han et al. [14] showed that a three-phase
pruning, quantization, and Huffman coding strategy, Deep Compression, can reduce model
sizes by energy efficiency gains. Complementing these, La Rosa et al. [15] systematically
review visual analytics tools for explainable Al, categorizing them into exploration, ver-
ification, and knowledge generation loops. Large-scale biological applications leverage
network visual analytics platforms such as OmicsAnalyst [16] and OmicsNet 2.0 [17], which
provide 2D /3D layout flexibility and reproducible workflows for multi-omics integration.
Finally, Sharma and Gupta [18] developed a multi-view, highly coordinated framework that
employs spatiotemporal visualisation methods, network analytics, and anomaly detection
to investigate the correlation between regional instability and global trade networks.

Feature visual analytics research is significantly advanced by studies that leverage
interactive visualization and machine learning to enhance data interpretation and decision-
making. For instance, research on interactive visual analytics systems demonstrates their
capability to integrate user feedback into feature selection processes, improving model
performance and interpretability [19]. Similarly, frameworks combining visual analytics
with machine learning emphasize real-time data exploration, enabling users to identify
critical features through intuitive interfaces [20]. Another study highlights the use of
visual analytics in high-dimensional data analysis, where interactive tools help uncover
patterns and anomalies, supporting feature engineering [21]. Additionally, scalable visual
analytics platforms facilitate the exploration of large datasets, allowing users to dynamically
refine feature sets for predictive modeling [22,23]. Furthermore, techniques for visualizing
complex data structures, such as graphs, enhance feature discovery by providing clear
representations of relationships [24,25]. Collectively, these works underscore the pivotal
role of visual analytics in enabling users to interactively explore, select, and refine features,
thereby bridging the gap between raw data and actionable insights.
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Visual analytics can be readily applied using the node-link diagrams (NLDs) because
they are familiar and effective to display intricate exchanges [26]. Nodes in the node-link di-
agrams (NLDs) are used to represent individual variables and links to show the relationship
between these variables [27,28]. The visual model is beyond the limitations of traditional
representations, presenting an intuitive and dynamic interface in the exploration of the
complex interconnections within data on energy efficiency. Among the key attributes of
NLDs that make the EPC computations significantly advanced are intuitive representation,
dynamic interaction, the identification of cluster, and the visualisation of time that offer a
superb level of visual information and complexities.

The proposed integrated framework, which combines NGA, visual analytics, and
node-link diagrams, offers substantial advancements in the field of energy efficiency
analysis at the households level. In this study, we provided the following contributions:

* Introduced a dynamic graph visualisation technique that converts individual dwelling
attributes directly into a network framework.

*  Proposed a systematic approach for analysing the structural features of houses, em-
phasising their impact on Energy Performance Certificate (EPC) ratings.

* Introduced a user-focused assessment system that measures the clarity and effective-
ness of the interactive graph visualisation.

¢ Presented comprehensive case studies that demonstrate the implementation of the
suggested technique across various EPC grades (A-G).

In the next sections of this article, we explore detailed methodology, case studies,
results and findings, demonstrating how the proposed framework can transform the field of
energy efficiency analysis for individual houses. Through the use of NGA, visual analytics,
and node-link diagrams, we foresee a future in which energy efficiency evaluations are both
precise and easily attainable, leading to a more sustainable and resilient built environment.

This study is structured into eight major sections: Section 1 concerns an introduc-
tion to how energy efficiency analysis techniques for houses need to undergo a radical
change. Section 2 describes network-informed visual analytics to figure out how different
house attributes contribute to and affect the energy performance of houses at the net-
work level. Section 3 explains the role of visual design and colour encoding for network
preferences, while Section 4 discusses the findings of our research on turning individual
housing attributes into a network structures to improve attribute performance interpreta-
tion. Section 5 presents case studies of home networks associated with various EPC ratings.
Section 6 evaluates the usefulness of the proposed network-informed visualisation method
in assessing the interconnected contextual factors in the energy efficiency of residential
buildings. Section 7 explains the study’s significance, scalability, and limitations, as well as
future work. Section 8 concludes the findings of this proposed framework.

2. Proposed Framework

The framework presented in Figure 1 represents a method based on network-informed
visual analytics that is proposed to review the influence of the different attributes of a
house on the energy efficiency of a single-family home. It is a hybrid approach capitalising
on the advantages of graph theory, a statistical analysis, and visualisation to present a
complete picture of the complexity of the relation between various properties [29]. To
analyse the requirements of node-link diagrams’ interpretation, we conducted an expert
analysis and interviewed users. There were three experts (P1-3) with more than five years
of experience in the area of house energy performance assessment involved. From graph
visualisation, three experts (P4-6) were involved. We also conducted an interview with
a group of ten non-experts (P7-16), five (P7-11) of whom are knowledgeable in terms of
house performance energy evaluation but lacking in their graph-drawing visualisation
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and five (P12-16) of whom are knowledgeable in terms of visualisation but lacking in the
assessment of buildings in terms of their energy efficiency. We obtained 30 diagrams of
node links and showed them to our participants. The specialists offered a brief description
of the underpinning knowledge of the energy performance certificate colours’ scores, as
well as the node-link diagram, and they shared suggestions as to how these can be made
conceivable. The people who are novices in the field helped us understand the knowledge
attainment of node-link diagrams by the first-timers through a different perspective. We
looked at what criterion can be suggested to improve node-link diagrams and achieve a
network structural improvement, and we provided an overview of the proposed resolution
that we were offering them after taking into account their suggestions.
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Figure 1. EPCDescriptor framework.

2.1. Graph Design Requirement Analysis

Our study yielded four needs [V1-4] for visual information extraction and three
requirements [S1-3] for structural visual information.

2.1.1. Extracting Visual Information

V1: Searching node conditions: A meticulously designed energy performance colour-
grading scheme was adopted from previous work [30,31] to gain a visual comprehension
of node and node-link features within the Energy Performance Certificate (EPC) context.
This colour scheme guarantees that different attribute ranges have unique and easily
identifiable colours, as per their actual performance, which are in line with the EPC grading
system. The solution has a dynamic colouring functionality, which allows for the immediate
visualisation of modifications in attribute values. Users may customise colour thresholds for
various EPC circumstances, providing a personalised visual experience. In order to improve
user guidance, tooltips have been included to provide comprehensive EPC information
for each node. Furthermore, a detailed explanation is included, can be seen in Figure 2,
clarifying the relationship between colours and certain EPC rules and making it easier to
understand the visual depiction of the data.

V2: searching node-link conditions: Users and stakeholders need accurate expla-
nations of the values given to edges, particularly where the attribution of relationships
between different housing attributes is concerned. It would be beneficial to introduce
the dynamic edge visualisation colours encoded in Figure 3 in order to boost the user
experience. These characteristics would enable users to compare changes in connection
weights over time or on the basis of specific criteria. Moreover, the possibility of changing
thresholds would benefit stakeholders because stakeholders can set limits to weights of
edges and prioritize valuable interactions in the network. Such enhancements illustrate an
even more intuitive and accessible exploration of the complex relations within the house
attribute network.
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Figure 3. Node-link visual weights” mapping.

V3: visual encoding: The spectrum of efficiency can be marked with a colour gradient,
using green as a high level of efficiency and red as an area to work on, as is explained in
Figure 2. The thickness of the links is used as a graphical representation of the strength of
connections between nodes, possibly representing the degree of dependence or influence
that each element can have upon the other in the energy performance network. Together,
such visual images give people a moving map with which it is easy to navigate and compre-
hend the intricacies of energy efficiency in an instant. It is demonstrated in Figure 3. Such
techniques as the use of reasonable node colours and the thickness of node links regulated
under the principles of EPCs make a visualization easier to interpret by a user. Visual
aids can also prove useful to users so that they can have an idea of the relevance of these
visual depictions. Furthermore, the possibility of analysing various attributes’ performance
scenarios through the variation of variables, the selection of specific measurements, and a
focus on the specific aspects of choice promotes flexibility and allows users to personalise
their experience based on their particular needs.

V4: structural layout: To make the empowerment of stakeholders in the field of
network analysis possible, there has to be a possibility of customising algorithms so that
the calculation of the EPC rules and the optimisation of the network topologies according
to their performances in the house attributes can be made. The recommendation given to
us by the experts is that, instead of explaining the details to people about the algorithm
itself, we should only give access to information and arrange the layout in such a way so
as not to overload the users of such information. This will enable them to access deeper
meanings and reach more informed decisions in the complex sub-discipline of network
analysis.
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2.1.2. Structural Visual Information

S1: construction of attributes network: Generating an attribute network with EPC
data includes the transformation of the attributes into nodes with structural analysis
criteria, building connections. Each of the attributes is converted to an individual node
in the network, and the connections among them are established based on the stipulated
rules, which are acquired during the performances. These rules include the measures of
centrality, which are degree or betweenness, and they highlight the significance of this or
that feature within the whole structure of the network. An attribute network graphically
shows the relationship between different features of EPC data in terms of connectivity
and dependency, which allows for defining the essential elements and their impact on the
whole system.

S2: structural relationship rules: In this study, we proposed the proportional rule
to calculate weights for determining the links between various numerical columns in the
dataset, specifically for Energy Performance Certificate (EPC) ratings. The selection of a
proportional rule is contingent upon the stakeholders” comprehension of the EPC rating
system and their objectives for evaluating the correlations among numerical columns in
the dataset. It is recommended to engage stakeholders in conversations in order to collect
their specialised knowledge and preferences for establishing proportionate guidelines that
are in line with the particular context of energy performance analysis.

S3: structural mapping house and network: The structural network information
represents the links and interdependencies across various attributes, offering a comprehen-
sive understanding of the overall structure of energy performance metrics in the dataset.
The house structural network information demonstrates the interconnections between
several factors associated with energy performance in house. The minimal spanning tree,
and proportional rules, provide a means of comprehend ing the essential features that
contribute to the overall structural makeup of the network. The provided data possibly
will be subjected to in-depth analysis and visualisation to obtain a better understanding of
the many connections and interdependencies present in the energy performance dataset.

2.2. Abstraction of EPCDescriptor

The EPCDescriptor adheres to an extraction and visualisation flowchart, as follows.

2.2.1. Visual Information Extraction Module

In order to finish V1-4, we developed and executed an information extraction and
visualisation modules in Figure 1 that utilises houses” input data.

M1: searching node conditions: The V1 module features a dynamic colouring capa-
bility that enables instant viewing of changes in attribute values. Users have the ability
to adjust hue thresholds for different EPC situations, allowing for a customised visual
experience. To enhance user guidance, tooltips have been incorporated to offer full EPC
information for each node.

M2: searching node-link conditions: In order to execute V2, the module examines
the link conditions. The algorithm uses the original graph data as an input and determines
appropriate conditions between linked node pairs to accurately portray the meanings of
the links.

M3: visual encoding: A gradient of colours spanning from green to red in M3 is
used to depict the spectrum of efficiency, where green represents high efficiency and red
represents areas that require improvement. The thickness of links visually represents
the strength of connections between nodes, perhaps representing the interdependence or
influence that one element has on another within the energy performance network.
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M4: structural layout: This part of the module checks V4 to see whether the relation-
ship is based on attributes or topology. It finds the layout type using the proportional rule
to calculate weights for determining the links between numerical attributes.

2.2.2. Visual Structural Generation Module

Based on S1-3, we introduced a module for generating EPCs structures, shown in
Figure 1, in order to articulate the data we acquired. The process follows a systematic
approach (S1): Transforming EPC data into an attribute network requires transforming
attributes into nodes and building connections according to structural analysis standards.
The established rules derived from performances dictate the connections between every
attribute, which are turned into individual nodes in the network. S2 suggested the propor-
tional rule to determine weights for linking numerical columns in the dataset. S3 showed
attribute linkages and interdependencies, providing a complete picture of the dataset’s
energy performance measures.

3. Visual Information Extraction

In this section, we describe how the proposed technique utilises network graph ana-
lytics, interactive visualisation, and user-friendly interfaces to enable researchers, analysts,
and stakeholders to gain a thorough knowledge of the complex interactions within housing
attribute networks. The system prioritises adaptability, expandability, and comprehensibil-
ity to facilitate a broad spectrum of research inquiries and examinations.

3.1. Input Data Description of EPCDescriptor

The dataset is collected from Department for Levelling Up, Housing & Communities,
United Kingdom [32]. The dataset includes 36,540 houses in the Table 1 and a wide range
of characteristics, including architectural elements like houses archetype, age construction,
and floor size, as well as energy and environmental-related measurements such as energy
consumption, environment impact, CO, emissions, and rating. In this study, we explored
numerical attributes. The selection of attributes was meticulously made based on their
direct correlation to the energy efficiency of house. Table 2 shows the measurement scale
of each attribute. This selection guarantees a concentrated examination of the aspects that
influence energy usage and environmental effect.

Table 1. EPC housing data.

Total Houses Total Houses Number of
(Before (After EPC Rating Houses (As per Numerical Attributes Acronym
Cleaning) Cleaning) EPC)
49,959 36,540 A 20 Energy Consumption Current ECC
B 458 CO; Emissions Current CEC
C 11,099 CO;, Emissions Curr Per Floor Area CEPFA
D 19,482 Lighting Cost Current LCC
E 4599 Heating Cost Current HCC
F 732 Hot Water Cost Current HWCC
G 150 Total Floor Area TFA
Number Habitable Rooms NAR
Number Heated Rooms NHR

Low Energy Lighting LEL
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Table 2. Attributes’ measurement.

Numerical Attributes Unit

Energy Consumption Current Kilowatt-hours (kWh)

CO; Emissions Current Kilograms of carbon dioxide (kg CO,)
CO, Emissions Curr Per Floor Area  Kilograms of carbon dioxide per square meter (kg CO,/m?)
Lighting Cost Current Currency per unit time

Heating Cost Current Currency per unit time

Hot Water Cost Current Currency per unit time

Total Floor Area Square meters (m?)

Number Habitable Rooms Count

Number Heated Rooms Count

Low Energy Lighting Count

3.1.1. Handling Missing Values and Inconsistencies

The collected data included 49,959 houses from the York area. We removed the data
for houses for which there were missing values and discrepancies present in the dataset. To
ensure compliance with network-based analysis, non-numeric data was translated into a
numeric format due to the varied characteristics of attributes. Attributes that had negative
values were adjusted to ensure that they remained positive. After handling, we extracted
36,534 house data, which is presented in Table 1.

3.1.2. Attributes Scaling

We used a min—-max algorithm to scale numerical properties. A fair and equal compar-
ison [33], with a standard range of 0 to 1, was achieved by using scaling, which prevents
attributes with greater magnitudes from dominating the study. All numerical properties
were brought to a similar scale by applying techniques like min—max scaling [34].

The following min—-max attribute scaling formula is given:

Xscaled = % 1)
where the following applies:
Xscaled 1S the scaled value of the attribute.
X is the original value of the attribute.
Xmin is the minimum value of the attribute in the dataset.
Xmax 1s the maximum value of the attribute in the dataset.
All scaled attribute values must be between 0 and 1 since this formula guarantees that.

3.2. M1: Searching Node Conditions

This subsection explores our methodology for illustrating how distinct node colours
within the interactive graph visualisation symbolise the significance or contribution of
individual housing attributes to the network’s overall structure. More precisely, it comprises
the three primary stages delineated below:

3.2.1. Searching Attribute Conditions

We initially established possible search and colours conditions for every pair of nodes.

C1: node colour: A colour is allocated to each node, shown in Figure 2, which
corresponds to a housing attribute, in accordance with its numerical value. From a prede-
termined EPC colour scale, which is a gradient spanning from dark green to dark red, the
colour is selected.
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C2: EPC colourbar: A colourbar, Figure 2, is incorporated into the visualisation to
serve as a guide for deciphering the colours of the nodes. The visualisation displays the
spectrum of centrality values associated with distinct colours in the customised colour scale.

C3: colour scale: The colour scales, custom or gradient, specified spans from a deep
green hue for high values to a deep red hue for low values, encompassing a variety of
intermediate hues. This scale was employed to correlate EPC proportional rules values
with appropriate node colours.

C4: node interpretation: Nodes that are darker in colour represent attributes that
have significant dependencies in the network, whereas nodes that are lighter in colour
represent attributes with fewer significant relationships.

3.2.2. Attributes Filtering Conditions

The data is refined by applying a filter that is contingent upon the chosen postcode,
yielding a subset of residences that possess the specified postcode.

3.2.3. Interactive Sorting Conditions

When a user selects a certain postcode and metric, the graph visualisation adjusts
dynamically to display only the appropriate dataset, effectively representing the network
structure purely based on the specified parameters. In this sophisticated framework, nodes
representing attributes are prominently coloured based on their metric values, providing a
clear visual representation of their individual contributions to the overall network structure
within the chosen postcode. This customised graph not only simplifies the presentation of
pertinent data but also improves the user’s comprehension of the intricate connections and
effects of variables in the chosen geographic region.

3.3. M2: Searching Node-Link Conditions

In this subsection, the structure of node-link searching, selecting, and filtering meth-
ods is explained with the help of colour weights, which contribute greatly to exploring
of the network structure and understanding it. Having become acquainted with these
components, we can now analyse how they interact.

3.3.1. Node-Link Structure Conditions

In this dynamic network, a complex type of connection develops, and the structure
comprises nodes and links. The nodes refer to some attribute, whereas the edges corre-
spond with the associations formed with the help of proportional rules. The network is
architecturally dynamic to meet with the user choice of its postcode, metrics, columns, and
target nodes. The network can be customised to fit to the needs of its users, thus providing
a personalised, contextually appropriate representation of relationships within the data.

3.3.2. Node-Link Filtering Conditions

This has a certain filtering capability, which enables the user to selectively scan and
analyse network topology of node-link regions. Using the node-link filtering condition of
chosen postcode, the visualisation becomes so targeted that it offers a full and clear view of
the specific geographical area of a planned area with a unique colour, as demonstrated in
Figure 3. This aspect enhances the ability of the user to view intricacies of the node-link
interconnections of a particular spot, and it is possible to obtain a better and narrower
study of the data.

3.3.3. Rule-Based Node-Link Weight Calculation

Our technique lies in the finding of the edge weights between nodes. Our study offers
a different perspective on the issue of quantification of relationships within numerical
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data. The proportionate rule-based edge weights are suggested as a multifunctional and
understandable framework of an exploratory data analysis at the single house level that
can be used in numerous spheres.

The edge weights in our network are computed via a two-step proportional rule. First,
for each pair of distinct numeric attributes, i and j, we extract their values in the reference
row, x; and x;, and compute the raw distance, |x; — x;|. This distance is then scaled by
the inter-percentile range between the 10th and 50th percentiles, psy — p19, yielding the

intermediate weight.

|lx; — xj]
Wi = ——. 2
K Ps0 — P10 @)

To confine all weights to the unit interval, we normalize a second time by the same percentile
span, producing

. Wij

Wij = ————. )

Ps0 — P10

each edge weight reflects the proportional difference between attributes relative to a robust
measure of data spread, attenuating the influence of outliers. The Algorithm 1 output is
a fully normalized weight matrix, which can be directly converted into a DataFrame for

graph construction and visual encoding.

Algorithm 1: Proportional Rule-Based Edge Weight Calculation

Data: Numerical dataset data, Percentiles percentile_values
Result: Normalized weights matrix weights_matrix

Input:

numerical_columns < Select numerical columns from data
first_row <— Extract the first row of numerical_columns
weights < Initialize empty dictionary

Algorithm: foreach column; in numerical_columns do

foreach columnj in numerical_columns do

if column; # column; then

x; < Value in first_row corresponding to column;

xj < Valuein first_row corresponding to column;
[xi—x]

percentile_values[50]— percentile_values[10]

weight
percentile_values[50]— percentile_values[10]

weights|column;][column;] < normalized_weight

weight

normalized_weight <+

Output:
weights_matrix <— Convert weights dictionary to DataFrame
return weights_matrix

3.3.4. Node-Link Weights and Colour Conditions

The colours serve as interpreters of connections, conveying the importance through
their intensity. The colours in Figure 3 enhance the structural dynamics of the network,
creating a narrative of interrelated attributes. Using this technique of colours, we can
see the intensity of connections and uncover insights that could be missed from a limited
perspective. This allows us to understand and navigate the network’s intricacy more clearly.

3.4. M3: Visual Encoding Conditions

Visual encoding operates at both the attribute (node) and link (edge) levels. Visual
characteristics like colour magnitude and arrangement are employed to depict distinct facets
of the network configuration. Now, let us analyse the implementation of visual encoding:
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3.4.1. Attribute (Node) Level Visual Encoding

This network visualisation assigns different colours to nodes based on a selected
metric. The intensity of the colour corresponds to the values of the measure. A customised
colour scale is used to accurately assign these metric values to a range of colours, helping
stakeholders quickly identify nodes with greater or lower metric values. While the code
does not explicitly specify the sizes of nodes, they can be utilised to transmit further
information if needed. The following are the network metrics and their working for our
proposed framework;

1. Degree centrality (DC): In network topology, DC is defined [35] as the number of
connections to a node. We call nodes that have a high DC central. Differently coloured high-
DC nodes represent nodes that play a major function in linking attributes. By using this
above-defined colour scheme, we can highlight the network’s most important properties,
as per its contribution.

Application: Nodes’ selected colours reflect the metrics that measure them. A dark
green to a bright red gradient constitutes an example; the deeper the green, the greater the
metric value. Therefore, the mathematical expression is as follows;

DC(o) = Number of edges connected to node v
N Total number of nodes — 1

(4)

2. Betweenness centrality (BC): BC measures [36] how far a node is from other nodes
via the shortest pathways. Nodes with a high BC value connect other areas of the network.
To make them stand out, nodes with a high BC are given different colours, as per their
values. By doing so, stakeholders can better pinpoint the attributes that are vital in bridging
various similar performances of attributes.

Application: By including visual colouring along BC, the home attribute network
becomes more interpretable, which, in turn, allows for a more effective examination of
attribute linkages and how they affect energy performance. Hence, the following is the
mathematical expression:

BC(v)= ¥ 0st(0) 5)
sEvEL Ust
o5t represents the overall count of the shortest routes from the starting node, s, to the target
node, t, whereas 0 (v) denotes the number of those paths that proceed via the intermediate
node, v.

3. PageRank: By analysing the strength and number of links between nodes in a
network, PageRank calculates [37] a numerical weight and colour binding for each node.
Certain colours are allocated to nodes with greater PageRank ratings to emphasise their
importance in the network as a whole. As a result, it is easier to spot characteristics that are
major building blocks of the network as a whole.

Application: This colour representation helps stakeholders rapidly identify attributes
that most affect network structure. These measurements and visual colouring make the
home attribute network easier to grasp, enabling a better study of attribute correlations
and energy performance. Therefore, the formula is as follows:

PR(u)
PR(v)=(1—-d)+d _—

(@) = ) +dx (ueZB:v OutDegree(u)) (©)
where B, represents the set of nodes that are connected to node v, OutDegree(u) denotes
the number of outgoing edges from node u, and d is a damping factor typically assigned a
value of 0.85.
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3.4.2. Link (Edge) Level Visual Encoding

Within the domain of edge colour mapping, the primary focus is on visually repre-
senting the connections between different qualities. In this context, the colours represent
the importance or significance of the connections, providing a range to distinguish strong
connections from weaker ones. Using a customised colormap (epc_cmap) enhances the
visualisation by providing a subtle range of colours to highlight the variation in connection
weights. Although the code does not directly regulate edge thickness, it has the potential to
adjust and reflect the weight of edges, thus adding an extra layer of visual understanding
to the strength of connections. This careful coordination of colour and varying thick-
ness creates a detailed visual story, converting complex data connections into a clear and
understandable presentation.

3.4.3. Data Binding

The metrics, the characteristics of nodes, and the weights of edges are dynamically
connected to visual aspects, ensuring a precise representation of the data, as can be seen in
Figure 4. The interactive data binding feature enhances adaptability by enabling real-time
updates in the visualisation based on user actions, such as dropdown selections. This
enables stakeholders to thoroughly examine different aspects of the network structure,
such as filtering down to certain postcodes, analysing various metrics, focusing on specific
attributes, or examining target nodes. The integration of interactive and dynamic data
binding not only improves the precision of the visualisation but also adds a user-friendly
and investigative aspect to the research.

I a Mode-link Relationship

1
| I
Node 2
| Abte X VAL ||'________________|
| et || b Node-link Visual Interactions |
| Node 1 || —
Node 3 . N |
| arxcva Adhe ¥ - VAL || l I I II\ ) I\- _,'l |.‘_ _,JI -, |
| FESREERCEas Lo || Data Binding |
| Node 4 I Node 1 Node 2 Node 3 Node 4
| Athr 2 VAL || I I.r'_'\ll o I I,f—\ l./_‘\l |
[ Attr ¥: EPC COLOR | | /) o ! S |
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Data-Visual Mapping EPC Rules Visual Alignment EPC
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|~ rale 1 [ | | | epca | | |
O - " | role 2 | | | EPCE || |
|
O N role 3 | | | EPCC || :
O____,: : ) rolea | | |:EPCD|| |
O | - role 5 | [ ] | | EPCE || [ |
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Figure 4. (a) Node-link relationship, (b) node-link visual interactions, mapping, and data binding.

3.4.4. Structural Level Visual Encoding

Colour mapping is a good way of getting to know how complex a network can be. It
enables the stakeholders to identify the nodes containing high metric values within a short
time, giving insight into the significant features of the network. The visual perception of
using edge colour and thickness to signify the strength of the links further reinforces the
inference since the links could be easily identified as strong or weak links. This, in addition
to making the structure of the network be understood, also enhances the readability of the
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relationship between the various properties. The interactive exploration, which is enabled
via data binding and user interactions, improves the experience, as it enables a far more
detailed exploration into how different features and their interrelation play a role in the
evolving network environment.

3.5. M4: Structural Layout Conditions

Nodes are attributes, whereas the connections represent the associations between the
attributes. Such is the manifestation in Figure 5 depicting how the structural conditions of
the network work at the attribute (node) and link (edge) levels, with a certain focus placed
over the area of a placement of nodes and the general composition of the network.

Edge Matrix and Structural Visual Layout

Figure 5. Basic data visualization steps.

3.5.1. Structural Node Position

Nodes’ layout in network visualisation is key, and it is determined by particular
layout algorithms, which areas follows: spring_layout, random_layout, circular_layout,
and shell_layout [36]. When we compute these algorithms, we calculate node placements
to optimise some stated criteria, which may include minimising the number of node-link
crossings or occurring a uniform node distribution. The geographical arrangement of the
nodes in our method tells us something about the total geographical representation of
the network, which provides good insights regarding the relationships and similarities
between characteristics. It can be used to show the proximity of nodes in the visualisation
which could reflect a stronger connection or similarity, depending on which layout method
is chosen, giving a visually informative picture of the structure and patterns hidden about
the network. The following are the mathematical expression of specified layouts;

1. Spring layout. According to Hooke’s Law [38], the force between two nodes, i and
j, in a spring arrangement is as follows:

Fj =k (dij — Lj) @)
2. Circular layout. The polar coordinates are used to position the nodes in a circular
layout:
i
(6;,r) where 0; = % (8)

3. Random layout. The polar coordinates are used to position nodes in a random
layout:

i
(0;,rr) where 0; = %, N is the number of nodes 9)
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3.5.2. Structural Edge Positions and Connections

In the intricate webs of data connections, the concept of edge connections is funda-
mental in conducting a structural analysis. The defined algorithm above constructs a
network based on the defined proportional calculations to gauge the connection between
characteristics. The weight, which is a numerical depiction of the structural state, is crucial
to the comprehension of the intricate chains of data dependency. The code also establishes
a minimal tree that contains the most crucial connections with the minimum cumulative
weight by using the above proportional technique. This tree is a simplified model, which
would display the most significant relationships in the network and which would give an
overview of the most significant structural conditions. In the process, the code becomes
transparent to illustrate the simplest version of what really holds the network together with
a given amount of efficiency and precision.

3.5.3. Structural Layouts

The pattern of nodes, in being organized together in a very close occurrence, shows the
indication of an occurrence of a strong structural condition or shared traits. The minimal
proportional tree is a powerful instrument to show the basic essence of these connections.
It offers a graphical interpretation with a visual understanding, which erases less critical
interactions. Through this approach, one is able to understand the overall network structure
through highlighting key relationships. The element of interactive exploring allows the
user to view in detail the complexities of the network, thus making it sophisticated. With
the capacity to select some of the postcodes, metrics, columns, and target nodes, the
users can change the layout dynamically. This enables them to experience a glimpse
of their own peculiar structural situations, which are personalised to satisfy them. The
participatory approach enhances the transparency of visualisation, as well as the richness
of understanding, allowing them to look at more specific details of numerous interactions
in the network.

4. Visual Structural Information Generation

In this section, we elaborate the results of our work about transforming individual
levels of housing features into network representation and about encoding different colours
to enhance the interpretation of attribute performance. The approach aims to provide an
effective, basic understanding of the house Energy Performance Certificate (EPC) ratings.

4.1. House Network Construction and Layout

The network is constructed by linking each attribute of single houses with a node in
the network. The connections between attributes are depicted as edges, and the overall
arrangement is enhanced by the use of three layout algorithms, such as spring_layout,
random_layout, and circular_layout.

4.2. Attribute Performance Colour Coding

To emphasise and distinguish between attribute performances in the network, distinct
colour encodings are used. Attribute performance is represented as a bespoke colour
gradient that changes from dark red to dark green. The colour scale is used as a visual aid
to quickly identify elements with varying degrees of energy efficiency and environmental
effects for stakeholders.

4.3. Visualisation and Interpretation of Networks

The spatially organised and colour-coded attributes of the resulting network provide
an intuitive and straightforward depiction of attribute performances. The placement of
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nodes is determined by the spatial proximity of associated attributes, which facilitates the
detection of structural patterns and connections.

4.4. Interactive Visual Investigation

The visualization’s interactive functionalities empower users to dynamically explore
the network. Aspects such as target nodes, metrics, and postcodes can be customised
by stakeholders to correspond with their particular interests. By engaging in interactive
investigation, the interpretability of the network is improved, and a more individualised
comprehension of attribute performances is facilitated.

4.5. Evaluation of Overall Performance for EPC Ratings

The investigation concludes with the network furnishing a comprehensive perspective
on the performances of attributes, which culminates in the computation of overall EPC rat-
ings for residential properties [39]. The utilisation of colour encodings enables stakeholders
to differentiate the combined influence of specific attributes on a property’s environmental
impact and energy efficiency.

5. Case Studies

Our method offers stakeholders informative visual representations of home networks
associated with various EPC ratings, as demonstrated in these case studies. The integration
of network structure and colour encodings provides a detailed comprehension of attribute
performances, enabling stakeholders to make well-informed decisions for enhancing energy
efficiency and minimising environmental impacts [40]. Table 3 presents the core quantitative
attributes for each of the four EPC case studies (A, B, C, and E). By comparing metrics such
as energy ratings, CO, emissions, the glazed area, and low-energy lighting proportions,
readers gain an immediate overview of the underlying data driving the subsequent network
visualisations. These measurements form the foundation for understanding how individual
attributes contribute to each property’s overall energy performance.

Table 3. Key attribute measurements for case studies (EPC A, B, C, E).

Attribute EPCA EPCB EPCC EPCE
ENERGY_CONSUMPTION_CURRENT (kWh/m?-yr) 9 77 305 504
CURRENT_ENERGY_EFFICIENCY (%) 95 84 69 43
CO,_EMISSIONS_CURRENT (kgCO,/yr) 0.3 1.2 2.5 5.9
TOTAL_FLOOR_AREA (m?) 134 168 48 70
LOW_ENERGY_LIGHTING (% rooms) 100 100 60 60

5.1. Case 1: EPC A-Outstanding Energy Performance

This case study delves deep into the house network architecture of A-rated houses,
illuminating the intricate interplay of network conditions, visual inspection, layout styles,
and interactions that lead to the presentation of outstanding energy efficiency.

5.1.1. Node-Link Conditions

The significant positive correlations in the linkages for EPC A in Figure 6 indicate
the attributes that lead to its high energy efficiency as a whole. There were no deleterious
effects on energy performance since there were no unfavourable linkages.
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Figure 6. EPC_A.

5.1.2. Visual Encoding Conditions

EPC colour encodings are selectively applied to nodes and edges indicating attributes;
for example, dark green denotes excellent energy efficiency. That way, everyone with a
stake in the matter may see clearly which factors contributed most to the EPC A grade as
a whole.

5.1.3. Structural Layout Conditions

To highlight the high degree of association between these attributes, an optimised
arrangement is used here. Stakeholders can see how the features that contribute to out-
standing energy performance are linked to the layout’s node positioning that minimises
overlapping.

5.1.4. Interactive Visual Interaction

Nodes allow users to get comprehensive information about certain qualities through
interaction. Hovering over connections also shows how strong the relationships are. Stake-
holders may explore the network in greater depth and acquire a more sophisticated knowl-
edge of the interactions among qualities with this interactive aspect.

5.2. Case 1: EPC B-Above Average Energy Performance

This network structure of EPC B-rated houses is intricately built to effectively com-
municate the subtle details of energy performance that surpass the average level. The
insightful visual analysis is influenced by several crucial elements, such as link conditions,
the visual layout style, and interactive attributes.
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5.2.1. Node-Link Conditions

The network’s connection requirements for EPC B-rated households prioritise energy
performance that is superior to the average. Connections (edges) among nodes (attributes)
symbolise associations, with different weights indicating the extent of a link. In this
instance, the correlations demonstrate positive associations, but they are not as prominent
as in EPC A. The allocation of weight plays a role in comprehending the interconnection
between attributes.

5.2.2. Visual Encoding Conditions

Nodes representing distinct features are strategically positioned in Figure 7 to optimise
clarity and highlight their interconnections. The visual encoding employs a colour spectrum
that moves towards lighter greens, representing impressive energy efficiency and a modest
environmental effect. This selection assists stakeholders in promptly identifying the factors
that contribute considerably to the above-average energy performance of EPC B.
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Figure 7. EPC_B.

5.2.3. Structural Layout Conditions

The selected layout type for EPC B networks prioritises the optimisation of node
placement to enhance clarity and comprehension. Although not as densely arranged as in
EPC A, the design guarantees that the positive connections between qualities are clearly
seen. The choice of layout type enhances the overall coherence of the network, making it
easier for stakeholders to understand how attributes are interconnected.

5.2.4. Interactive Visual Interaction

Interactivity is integrated to augment stakeholder involvement. Users can navigate
the network by engaging with nodes and links, which will unveil further details about
specific features and their interconnections. By hovering on nodes, users can view detailed
information, and stakeholders have the ability to zoom in or out and move around to
examine specific areas of interest. This interactive component enhances the visual analysis
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by introducing a dynamic aspect. It enables stakeholders to explore the network structure
and attribute correlations of EPC B-rated houses in greater detail.

5.3. Case 2: EPC C-Moderate Energy Performance

This case study allows a detailed investigation of attribute performances, which adds
to knowledge of EPC C’s moderate energy performance. Careful consideration was given
to the network architecture in order to achieve a balance between environmental effect and
energy efficiency in the context of properties rated C by the Energy Performance Certificate
(EPC). In order to provide stakeholders a thorough grasp of EPC C’s moderate energy
performance.

5.3.1. Node-Link Conditions

The connection conditions in the network in the Figure 8 are indicative of the as-
sociations between characteristics. Within EPC C, the linkages are formed to represent
moderate correlations, hence avoiding very positive or negative associations. This guaran-
tees a widely spread and interconnected network that corresponds to the modest energy
efficiency associated with EPC C.
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Figure 8. EPC_C.

5.3.2. Visual Encoding Conditions

The visual analysis concentrates on colour encodings that range from yellow to bright
green. The colour yellow represents attributes that have a modest level of energy effi-
ciency, whereas light green suggests an acceptable level of environmental impact. The
colour spectrum visually displays a range of factors that contribute to the balanced energy
performance of EPC C-rated homes, enabling stakeholders to easily recognise them.

5.3.3. Structural Layout Conditions

The selected layout type for EPC C is specifically designed to promote a uniformly
dispersed network. Nodes representing attributes are intentionally placed to demonstrate
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modest correlations without forming clusters or being isolated. The use of this layout
style improves the understanding of the network structure, helping stakeholders grasp the
interconnections between features that contribute to moderate energy performance.

5.3.4. Interactive Visual Interaction

Interactive components are incorporated to enable stakeholders to actively investigate
the network in a dynamic manner. Users have the ability to hover over nodes in order
to see attribute information, click on links to discover particular connections, and modify
interactive settings to personalise their exploration. By utilising this interactive feature,
stakeholders are able to thoroughly explore the interconnection of features and acquire
valuable insights into the elements that influence the moderate energy performance of EPC
C-rated houses.

5.4. Case 3: EPC E-Insufficient Energy Performance

The EPC E case study offers stakeholders a comprehensive set of tools to comprehend
and tackle inefficient energy performance. By utilising these characteristics, those involved
may discern, plan, and execute actions with efficacy, finally striving towards attaining
enhanced energy efficiency in residences with an EPC rating of E.

5.4.1. Node-Link Conditions

Within the network in the Figure 9 of EPC E-rated houses, the connectivity circum-
stances suggest that the energy performance is not ideal. The edges linking nodes (at-
tributes) highlight regions that require significant enhancement in energy efficiency. The
link weights, shown by the intensity of the orange colour, highlight the robustness of the
connection between related characteristics. Links that are darker indicate traits that have
the highest potential for improvement.

Interactive EPCDescriptor

Select Postcode Select Metric Select Columns Select Graph Layout

Y032 SAL - PagoRank d Random Layout

LCC 0.34

— @'
m@®

ECC
.
— ]
LEL.’ ¢
CEE 3
\ CEPFA
HWCC
CEC NHR

Figure 9. EPC_E.
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5.4.2. Visual Encoding Conditions

The visual analysis of the network aims to capture stakeholders’ attention towards key
regions that contribute to energy performance that is below ideal. Attributes are shown as
nodes, and their positions are intentionally set to emphasise the necessity for enhancement.
The colour encodings, shifting towards deeper shades of orange, efficiently convey the
extent of energy inefficiency in various characteristics. Stakeholders have the ability to
visually recognise and give priority to specific areas for action.

5.4.3. Structural Layout Conditions

The chosen layout type for this example is intended to emphasise the need for change
with a sense of urgency. The nodes are organised in a manner that clearly highlights the
interconnection between qualities that contribute to unsatisfactory energy performance. The
design emphasises lucidity and ease of use, allowing stakeholders to swiftly comprehend
the organisation of the network and identify crucial areas that want attention. In this
situation, it is essential to have a layout type that highlights attribute connections and
prospective enhancements.

5.4.4. Interactive Visual Interaction

Interactive elements improve stakeholders’ capacity to investigate the dynamics of the
network. Users have the ability to engage with nodes, move their cursor over linkages, and
get comprehensive understanding of attribute performances. Choosing a node yields fur-
ther data, but engaging with links unveils the intensity of connections. By comprehending
both the qualities and intricate connections that contribute to inadequate energy efficiency,
this interactive method enables stakeholders to develop improvement solutions.

6. Evaluation Study
6.1. Objective

The study sought to evaluate the usefulness of the proposed network-informed visual-
isation method in assessing the interconnected contextual factors in the energy efficiency
of residential buildings. The examination encompassed experts in the field of energy
performance, as well as persons with diverse degrees of proficiency in data visualisation.

6.2. Participants
6.2.1. Specialists (P1-P3):

Three experienced individuals with a combined competence of over five years in
evaluating the energy efficiency of residential properties. Expertise in assessing the energy
efficiency of residential buildings. Involved in the analysis of the suggested data-based
visualisation method.

6.2.2. Visualisation Experts (P4-P6):

For the purpose of conducting a thorough evaluation, we enlisted the assistance of
three experts in the discipline of data visualisation.

6.2.3. Users (P7-P16):

Experienced Users (P7-P11): individuals with a certain level of understanding in
evaluating the energy performance of houses. Insufficient expertise in generating graph
visualisations.

General Users (P12-P16): possess a solid understanding of visualisation methods.
Insufficient expertise in evaluating the energy efficiency of buildings.
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All participants were invited via targeted emails and offered a nominal honorarium.
Each user first performed a short tutorial on a conventional EPC table interface (the UK
GOV online EPC viewer) as a baseline. They then completed identical interpretation tasks
using our network-based platform. Task order was counterbalanced to mitigate learning
effects. We recorded accuracy, completion time, and subjective ratings for both interfaces.

6.3. Tasks

Participants examined the interconnected contextual factors in energy performance
characteristics depicted in the graph-based visualisation. The participants were given
several EPC situations and tasked with interpreting and comprehending the connections
between relevant qualities.

6.4. Action to Take

Introduction Phase: A concise three-minute overview of the objectives, study materi-
als, and assignments.

Practice Phase: A brief five-minute session where participants can freely navigate the
graph-based visualisation using a mouse.

Task Phase: Participants engaged in formal tasks, dedicating around one hour to
examine and analyse three EPC situations utilising the graph-based visualisation. Respon-
sibilities included responding to inquiries concerning energy performance characteristics.

Evaluation Phase: Participants were instructed to assess the visualization’s legibility,
visual appeal, and usefulness using a Likert scale. In addition, they were prompted to offer
recommendations for enhancement.

6.5. Results
6.5.1. Clarity

The results, in Figure 10, showed a mean scale of Likert scoring of 4.8 (+0.4) for the
node-link visualisation strategy. Results showed significant improvements (p < 0.05) over
the baseline legend technique, with a mean value of 3.2 (+0.3). Our solution makes node-
link diagrams for energy performance certificate characteristics more understandable for
numerical attributes.

Comprehensibility Aesthetic Utility
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Figure 10. Scales Results.

Finding 1: Our node-link method outperforms the legend method in comprehensibil-
ity. Overall, participants understood attribute linkages and energy performance ratings
better. This shows, in Figure 11, that visualising characteristics as a network improves
energy performance certificate understanding and interpretation.

Lesson Learned 1: The feedback highlighted the significance of enhancing user inter-
actions to provide a more intuitive study of the graph.
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Figure 11. Findings and lessons learned results.

6.5.2. Aesthetic

User ratings and input determined aesthetics. The node-link visualisations got
favourable feedback, scoring an average aesthetic value of 4.5 (+0.3) on the Likert scale.
Users liked the colour encoding and layout, which made attribute relationships seem well.
This suggests that our method increases data comprehensibility and aesthetics.

Finding 2: User comments stressed data visualisation aesthetics. Colour gradients,
node location, and layout made the depiction appealing. Aesthetic appeal was found to
affect user engagement and visualisation satisfaction.

Lesson Learned 2: to boost user involvement and interpretation, aesthetic strengthens
are vital.

6.5.3. Practicality

Our visualisation approach was evaluated according to its ability to help users discover
attribute effects and comprehend energy performance. At a mean Likert scale score of 4.6
(£0.2), as can be seen in Figure 10, participants indicated good utility scores. Our method is
suitable for obtaining important insights from energy performance certificate data.

Finding 3: Our method helped users discover energy performance factors. Interactive
elements like node searching and filtering were useful for retrieving specific information.
This shows our visualisation method’s real-world applicability.

Lesson Learned 3: A more flexible approach with additional uses can be achieved by
tailoring utility features to user needs.
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7. Discussion
7.1. Significance

The platform that has been built utilises the interactive graph visualisation code.
This platform has important implications for comprehending and evaluating the energy
efficiency of houses. It does so by employing a novel network-centric approach. By trans-
forming individual characteristics of houses into interconnected systems, stakeholders may
obtain a comprehensive and easily understandable view of the connections between many
aspects that impact energy efficiency. The importance rests in its capacity to condense
intricate attribute relationships into readily understandable visual representations. This
platform enables stakeholders, such as homeowners, energy analysts, and policymakers, to
make well-informed choices on energy-efficient house upgrades. Moreover, the applica-
tion’s adaptability enables it to be used with a wide range of datasets, making it a versatile
tool for tackling different energy performance scenarios.

7.2. Scalability

An important factor to examine is the platform’s capacity to scale with datasets of
different sizes and levels of complexity. Although the current implementation shows
efficacy with the given dataset, it is necessary to conduct further analysis to see how
well the platform can handle larger datasets or datasets with extra properties. Efficiently
improving algorithms and data processing pipelines will be essential for preserving the
platform’s promptness and guaranteeing a smooth user experience as the size expands.

7.3. Limitation

Although the platform adopts an innovative approach, it faces intrinsic limitations
that deserve recognition. The precision and dependability of the visualisations are greatly
influenced by the calibre of the input data. The network structure’s integrity and the
derived insights may be compromised due to incomplete or erroneous data. To overcome
these restrictions, it will be important to tackle data quality concerns and establish strong
data validation methods. Furthermore, the software now emphasises attribute connec-
tions inside particular residences. Incorporating neighbourhood-level interactions and
external elements into the investigation would enhance our understanding of the overall
energy landscape.

7.4. Future Work

The platform provides opportunities for innovative future endeavours in several do-
mains. Possible improvements to the interactive features might involve the incorporation
of real-time updates and dynamic adjustments, enabling stakeholders to immediately view
the effects of attribute modifications on the network structure. In addition, by integrat-
ing machine learning algorithms for predictive analysis, the platform’s capabilities may
be enhanced, allowing stakeholders to anticipate the possible effects of energy-efficient
initiatives. In addition, involving subject specialists, architects, and urban planners in the
platform’s development might provide useful insights. By incorporating specialised infor-
mation from a specific field, the platform has the potential to develop into a collaborative
tool that assists in making informed decisions for sustainable urban development.

8. Conclusions

In this research study, we aimed to transform particular attributes of houses into a
networked representation, offering a new and easy-to-understand method for analysing
energy efficiency. A complete framework is developed by integrating sophisticated tech-
niques, node-link architectures, and visual analytics. This framework enables a better



Buildings 2025, 15, 2929 24 of 26

understanding of the intricate interactions between various qualities. The proposed tech-
nique uses network science to reveal the interconnected network of variables that together
contribute to the energy efficiency of dwellings. By converting these characteristics into
a visual depiction, stakeholders obtain an unparalleled understanding of the underlying
structural dynamics that determine energy performance. The results of our study highlight
the importance of visual encoding in converting complex attribute interactions into a format
that is easy to understand and can be acted upon. The nodes and linkages are colour-coded
and include interactive capabilities, which enable stakeholders to recognise trends, identify
significant attributes, and make well-informed decisions. We have showcased the versatility
of our technique by conducting case studies on various energy performance scenarios,
spanning from EPC A to EPC G. Each case study has offered detailed insight into the
network topologies, graphically emphasising the strengths and subtleties associated with
different EPC ratings.
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